-
2
-
-
0016542694
-
Optimal fuzzy partitions: a heuristic for estimating the parameters in a mixture of normal distributions
-
Bezdek J.C., and Dunn J.C. Optimal fuzzy partitions: a heuristic for estimating the parameters in a mixture of normal distributions. IEEE Trans. Comput. 24 8 (1975) 835-838
-
(1975)
IEEE Trans. Comput.
, vol.24
, Issue.8
, pp. 835-838
-
-
Bezdek, J.C.1
Dunn, J.C.2
-
3
-
-
0036082940
-
-
Bezdek, J.C., Hathaway, R.J., 2002. VAT: a tool for visual assessment of (cluster) tendency. In: Proceedings of the IJCNN 2002, IEEE Press, Piscataway, NJ, pp. 2225-2230.
-
-
-
-
7
-
-
0003444099
-
-
Kluwer, Norwell
-
Bezdek J.C., Keller J.M., Krishnapuram R., and Pal N.R. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing (1999), Kluwer, Norwell
-
(1999)
Fuzzy Models and Algorithms for Pattern Recognition and Image Processing
-
-
Bezdek, J.C.1
Keller, J.M.2
Krishnapuram, R.3
Pal, N.R.4
-
8
-
-
33750321791
-
-
Bradley, P., Fayyad, U., Reina, C., 1998a. Scaling clustering algorithms to large databases, In: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, AAAI Press, Menlo Park, CA, pp. 9-15.
-
-
-
-
9
-
-
33750346798
-
-
Bradley, P., Fayyad, U., Reina, C., 1998b. Scaling EM (expectation-maximization) clustering to large databases. Technical Report MSR-TR-98-35, Microsoft Research, Redmond, WA.
-
-
-
-
10
-
-
0022682981
-
Efficient implementation of the fuzzy c-means algorithm
-
Cannon R.L., Dave J.V., and Bezdek J.C. Efficient implementation of the fuzzy c-means algorithm. IEEE Trans. PAMI 8 (1986) 248-255
-
(1986)
IEEE Trans. PAMI
, vol.8
, pp. 248-255
-
-
Cannon, R.L.1
Dave, J.V.2
Bezdek, J.C.3
-
11
-
-
0029226150
-
-
Cheng, T.W., Goldgof, D.B., Hall, L.O., 1995. Fast clustering with application to fuzzy rule generation. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Tokyo, Japan, pp. 2289-2295.
-
-
-
-
12
-
-
0026961606
-
-
Cutting, D.R., Karger, D.R., Pederson, J.O., Tukey, J.W., 1992. Scatter/gather: a cluster-based approach to browsing large document collections, In: Proceedings of the ACM SIGIR'92, pp. 318-329.
-
-
-
-
13
-
-
33750366086
-
-
Domingos, P., Hulten, G., 2001. A general method for scaling up machine learning algorithms and its application to clustering. In: Proceedings of the 18th International Conference on Machine Learning, pp. 106-113.
-
-
-
-
15
-
-
33750363267
-
-
Farnstrom, F., Lewis, J., Elkan, C., 2000. Scalability for clustering algorithms revisited. SIGKKD Explorations, vol. 2(1). ACM press, New York, pp. 1-7.
-
-
-
-
16
-
-
33750326734
-
-
Fayyad, U., Smyth, P., 1996. From massive data sets to science catalogs: applications and challenges. In: Kettenring, J., Pregibon, D. (Eds.), Proceedings of the Workshop on Massive Data Sets, National Research Council.
-
-
-
-
17
-
-
0035998835
-
Model-based clustering, discriminant analysis, and density estimation
-
Fraley C., and Raftery A.E. Model-based clustering, discriminant analysis, and density estimation. J. Amer. Statist. Assoc. 97 458 (2002) 611-631
-
(2002)
J. Amer. Statist. Assoc.
, vol.97
, Issue.458
, pp. 611-631
-
-
Fraley, C.1
Raftery, A.E.2
-
18
-
-
0032630575
-
-
Ganti, V., Gehrke, J., Ramakrishnan, R., 1999a. Mining very large databases, Computer, August, pp. 38-45.
-
-
-
-
19
-
-
85175742375
-
-
Ganti, V., Ramakrishnan, R., Gehrke, J., Powell, A.L., French, J.C., 1999b. Clustering large datasets in arbitrary metric spaces, Proceedings of the 15th International Conference on Data Engineering, IEEE CS Press, Los Alamitos, CA, pp. 502-511.
-
-
-
-
20
-
-
0032091595
-
-
Guha, S., Rastogi, R., Shim, K., 1998. CURE: an efficient clustering algorithm for large databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 73-84.
-
-
-
-
21
-
-
84947668623
-
On the asymptotic properties of fuzzy c-means cluster prototypes as estimators of mixture subpopulation centers
-
Hathaway R.J., and Bezdek J.C. On the asymptotic properties of fuzzy c-means cluster prototypes as estimators of mixture subpopulation centers. Comm. Statist. (A) 15 2 (1986) 505-513
-
(1986)
Comm. Statist. (A)
, vol.15
, Issue.2
, pp. 505-513
-
-
Hathaway, R.J.1
Bezdek, J.C.2
-
22
-
-
0001583858
-
Estimating the parameters of mixture models with modal estimators
-
Hathaway R.J., Redner R., and Bezdek J.C. Estimating the parameters of mixture models with modal estimators. Comm. Statist. (A) 16 9 (1987) 2639-2660
-
(1987)
Comm. Statist. (A)
, vol.16
, Issue.9
, pp. 2639-2660
-
-
Hathaway, R.J.1
Redner, R.2
Bezdek, J.C.3
-
23
-
-
33750328380
-
-
Huber, P., 1996. Massive Data Sets Workshop: The Morning After, Massive Data Sets. National Academy Press, pp. 169-184.
-
-
-
-
25
-
-
0036531325
-
Reducing the time complexity of the fuzzy c-means algorithm
-
Kolen J.F., and Hutcheson T. Reducing the time complexity of the fuzzy c-means algorithm. IEEE Trans. Fuzzy Systems 10 (2002) 263-267
-
(2002)
IEEE Trans. Fuzzy Systems
, vol.10
, pp. 263-267
-
-
Kolen, J.F.1
Hutcheson, T.2
-
27
-
-
0242698067
-
The learning curve sampling method applied to model based clustering
-
Meek C., Thiesson B., and Heckerman D. The learning curve sampling method applied to model based clustering. J. Mach. Learning Res. 2 (2002) 397-418
-
(2002)
J. Mach. Learning Res.
, vol.2
, pp. 397-418
-
-
Meek, C.1
Thiesson, B.2
Heckerman, D.3
-
28
-
-
33750355433
-
-
Ng, R.T., Han, J., 1994. Efficient and effective clustering methods for spatial data mining. In: Proceedings of the 20th International Conference on Very Large Databases, Morgan Kauffman, San Francisco, pp. 144-155.
-
-
-
-
30
-
-
33750367243
-
-
Provost, F., Jensen, D., Oates, T., 1999. Efficient progressive sampling, In: Proceedings of the Fifth KDDM, ACM Press, New York, pp. 23-32.
-
-
-
-
32
-
-
33750348587
-
-
Uma Shankar, B., Pal, N.R., 1994. FFCM: an effective approach for large data sets. In: Proceedings of the Third International Conference on Fuzzy Logic, Neural nets, and Soft Computing, IIZUKA, Fukuoka, Japan, pp. 332-332.
-
-
-
-
33
-
-
0030157145
-
-
Zhang, T., Ramakrishnan, R., Livny, M., 1996. BIRCH: an efficient data clustering method for very large databases. Proceedings of the ACM SIGMOD International Conference on Management of Data, ACM Press, New york, pp. 103-114.
-
-
-
|