메뉴 건너뛰기




Volumn 30, Issue 1, 2006, Pages 9-15

Fuzzy c-means clustering with spatial information for image segmentation

Author keywords

Clustering; Fuzzy c means; Image segmentation; Spatial information

Indexed keywords

ALGORITHMS; COMPUTATIONAL METHODS; DATA REDUCTION; IMAGE SEGMENTATION;

EID: 31544461548     PISSN: 08956111     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compmedimag.2005.10.001     Document Type: Article
Times cited : (1256)

References (13)
  • 1
    • 0027275316 scopus 로고
    • Review of MR image segmentation using pattern recognition
    • J. Bezdek, L. Hall, and L. Clarke Review of MR image segmentation using pattern recognition Med Phys 20 1993 1033 1048
    • (1993) Med Phys , vol.20 , pp. 1033-1048
    • Bezdek, J.1    Hall, L.2    Clarke, L.3
  • 2
    • 0028069240 scopus 로고
    • Estimation of CSF, white matter and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images
    • M.E. Brandt, T.P. Bohan, L.A. Kramer, and J.M. Fletcher Estimation of CSF, white matter and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images Comput Med Imaging Graph 18 1994 25 34
    • (1994) Comput Med Imaging Graph , vol.18 , pp. 25-34
    • Brandt, M.E.1    Bohan, T.P.2    Kramer, L.A.3    Fletcher, J.M.4
  • 4
    • 0033181293 scopus 로고    scopus 로고
    • Adaptive fuzzy segmentation of magnetic resonance images
    • D.L. Pham, and J.L. Prince Adaptive fuzzy segmentation of magnetic resonance images IEEE Trans Med Imaging 18 1999 737 752
    • (1999) IEEE Trans Med Imaging , vol.18 , pp. 737-752
    • Pham, D.L.1    Prince, J.L.2
  • 5
    • 0033705385 scopus 로고    scopus 로고
    • Feature-based fuzzy classification for interpretation of mammograms
    • N.S. Lyer, A. Kandel, and M. Schneider Feature-based fuzzy classification for interpretation of mammograms Fuzzy Sets Syst 114 2002 271 280
    • (2002) Fuzzy Sets Syst , vol.114 , pp. 271-280
    • Lyer, N.S.1    Kandel, A.2    Schneider, M.3
  • 6
    • 0036107314 scopus 로고    scopus 로고
    • Segmentation techniques for tissue differentiation in MRI of Ophthalmology using fuzzy clustering algorithms
    • M.S. Yang, Y.J. Hu, K.C.R. Lin, and C.C.L. Lin Segmentation techniques for tissue differentiation in MRI of Ophthalmology using fuzzy clustering algorithms Magn Reson Imaging 20 2002 173 179
    • (2002) Magn Reson Imaging , vol.20 , pp. 173-179
    • Yang, M.S.1    Hu, Y.J.2    Lin, K.C.R.3    Lin, C.C.L.4
  • 8
    • 0036489378 scopus 로고    scopus 로고
    • A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
    • M.N. Ahmed, S.M. Yamany, N. Mohamed, A.A. Farag, and T. Moriarty A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data IEEE Trans Med Imaging 21 2002 193 199
    • (2002) IEEE Trans Med Imaging , vol.21 , pp. 193-199
    • Ahmed, M.N.1    Yamany, S.M.2    Mohamed, N.3    Farag, A.A.4    Moriarty, T.5
  • 9
    • 0015644823 scopus 로고
    • Cluster validity with fuzzy sets
    • J.C. Bezdek Cluster validity with fuzzy sets J Cybern 3 1974 58 73
    • (1974) J Cybern , vol.3 , pp. 58-73
    • Bezdek, J.C.1
  • 12
    • 0001404416 scopus 로고
    • A new method of choosing the number of clusters for the fuzzy c-means method
    • Fukuyama Y, Sugeno M. A new method of choosing the number of clusters for the fuzzy c-means method. In: proceedings of fifth fuzzy system symposium; 1989, p. 247-50.
    • (1989) Proceedings of Fifth Fuzzy System Symposium , pp. 247-250
    • Fukuyama, Y.1    Sugeno, M.2
  • 13
    • 2942534051 scopus 로고    scopus 로고
    • Improving fuzzy c-means clustering based on feature-weight learning
    • X. Wang, Y. Wang, and L. Wang Improving fuzzy c-means clustering based on feature-weight learning Pattern Recognit Lett 25 2004 1123 1132
    • (2004) Pattern Recognit Lett , vol.25 , pp. 1123-1132
    • Wang, X.1    Wang, Y.2    Wang, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.