메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Single pass fuzzy c means

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; DATA COMPRESSION; DATA STRUCTURES; FILE ORGANIZATION; FLOW OF SOLIDS; FUZZY LOGIC; FUZZY SYSTEMS; SET THEORY;

EID: 50249122095     PISSN: 10987584     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FUZZY.2007.4295372     Document Type: Conference Paper
Times cited : (107)

References (28)
  • 5
    • 50249169108 scopus 로고    scopus 로고
    • P.S. Bradley, Usama Fayyad, and Cory Reina, Scaling Clustering Algorithms to Large Databases, In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, KDD-1998, pp., 9-15, 1998.
    • P.S. Bradley, Usama Fayyad, and Cory Reina, Scaling Clustering Algorithms to Large Databases, In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, KDD-1998, pp., 9-15, 1998.
  • 6
    • 0002679222 scopus 로고    scopus 로고
    • Scalability for Clustering Algorithms Revisited
    • Fredrik Farnstrom, James Lewis, and Charles Elkan, Scalability for Clustering Algorithms Revisited, ACM SIGKDD Explorations, V. 2, pp. 51-57, 2000.
    • (2000) ACM SIGKDD Explorations , vol.2 , pp. 51-57
    • Farnstrom, F.1    Lewis, J.2    Elkan, C.3
  • 8
    • 0036709106 scopus 로고    scopus 로고
    • CLARANS. A Method for Clustering Objects for Spatial Data Mining
    • Raymond T. Ng and Jiawei Han, CLARANS. A Method for Clustering Objects for Spatial Data Mining, IEEE Transactions on Knowledge and Data Engineering, 14(5): pp. 1003-1016, 2002.
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.5 , pp. 1003-1016
    • Ng, R.T.1    Han, J.2
  • 9
    • 50249088573 scopus 로고    scopus 로고
    • Efficient Fuzzy Clustering of Multi-spectral Images
    • David Altman, Efficient Fuzzy Clustering of Multi-spectral Images, FUZZ-IEEE, 1999
    • (1999) FUZZ-IEEE
    • Altman, D.1
  • 11
    • 0030150519 scopus 로고    scopus 로고
    • Partially Supervised Clustering for Image Segmentation
    • A. Bensaid, J. Bezdek, L.O. Hall, and L.P. Clarke, Partially Supervised Clustering for Image Segmentation, Pattern Recognition, V. 29, No. 5, pp. 859-871, 1996.
    • (1996) Pattern Recognition , vol.29 , Issue.5 , pp. 859-871
    • Bensaid, A.1    Bezdek, J.2    Hall, L.O.3    Clarke, L.P.4
  • 15
    • 0036531325 scopus 로고    scopus 로고
    • Reducing the Time Complexity of the Fuzzy C-Means Algorithm
    • John F. Kolen and Tim Hutcheson, Reducing the Time Complexity of the Fuzzy C-Means Algorithm, IEEE Transactions on Fuzzy Systems. V. 10, pp. 263-267, 2002.
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , pp. 263-267
    • Kolen, J.F.1    Hutcheson, T.2
  • 16
    • 57849144858 scopus 로고
    • Optimization of Clustering Criteria by Reformulation
    • Richard J. Hathaway and James C. Bezdek, Optimization of Clustering Criteria by Reformulation, IEEE Transactions on Fuzzy Systems, V. 3, pp. 241-245, 1995.
    • (1995) IEEE Transactions on Fuzzy Systems , vol.3 , pp. 241-245
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 17
    • 34548139373 scopus 로고    scopus 로고
    • A Cluster Ensemble Framework for Large Data sets
    • Man and Cybernetics, accepted
    • Prodip Hore, Lawrence Hall, and Dmitry Goldgof, A Cluster Ensemble Framework for Large Data sets, IEEE International Conference on Systems, Man and Cybernetics, 2006, accepted.
    • (2006) IEEE International Conference on Systems
    • Hore, P.1    Hall, L.2    Goldgof, D.3
  • 18
    • 0142025113 scopus 로고    scopus 로고
    • An adaptive rough fuzzy single pass algorithm for clustering large data sets
    • S. Asharaf, M. Narasimha Murty, An adaptive rough fuzzy single pass algorithm for clustering large data sets, Pattern Recognition, V.36, 2003.
    • (2003) Pattern Recognition , vol.36
    • Asharaf, S.1    Narasimha Murty, M.2
  • 21
    • 10044243984 scopus 로고    scopus 로고
    • P-AFLC: A parallel scalable fuzzy clustering algorithm
    • Alfredo Petrosino and Mauro Verde, P-AFLC: a parallel scalable fuzzy clustering algorithm, ICPR, V. 1, pp. 809-812, 2004.
    • (2004) ICPR , vol.1 , pp. 809-812
    • Petrosino, A.1    Verde, M.2
  • 22
    • 50249132277 scopus 로고    scopus 로고
    • Domingos, P. and Hulten, G.,A General Method for Scaling Up Machine Learning Algorithms and its Application to Clustering.Proc. Eighteenth Int'l. Conf. on Machine Learning, pp. 106-113, 2001.
    • Domingos, P. and Hulten, G.,A General Method for Scaling Up Machine Learning Algorithms and its Application to Clustering.Proc. Eighteenth Int'l. Conf. on Machine Learning, pp. 106-113, 2001.
  • 24
    • 0035575419 scopus 로고    scopus 로고
    • Bo Thiesson, Christopher Meek, and David Heckerman, Accelerating EM for Large Databases, Machine Learning Journal, V. 45, pp. 279-299, 2001.
    • Bo Thiesson, Christopher Meek, and David Heckerman, Accelerating EM for Large Databases, Machine Learning Journal, V. 45, pp. 279-299, 2001.
  • 25
    • 4344560363 scopus 로고    scopus 로고
    • Clustering very large databases using EM mixture models
    • Bradley, P.S., Fayyad, U.M., and Reina, C.A., Clustering very large databases using EM mixture models, ICPR, vol 2, pp. 76-80, 2000.
    • (2000) ICPR , vol.2 , pp. 76-80
    • Bradley, P.S.1    Fayyad, U.M.2    Reina, C.A.3
  • 26
    • 0026151470 scopus 로고
    • A neural network approach to statistical pattern classification by semiparametric estimation of probability density functions
    • Traven, H. G. C., A neural network approach to statistical pattern classification by semiparametric estimation of probability density functions, IEEE Transcations on Neural Networks, V. 2, pp. 366-377, 1991.
    • (1991) IEEE Transcations on Neural Networks , vol.2 , pp. 366-377
    • Traven, H.G.C.1
  • 27
    • 34548590808 scopus 로고    scopus 로고
    • Karkkainen and Franti, Gradual model generator for single-pass clustering, ICDM, pp. 681-684, 2005.
    • Karkkainen and Franti, Gradual model generator for single-pass clustering, ICDM, pp. 681-684, 2005.
  • 28
    • 0002788893 scopus 로고    scopus 로고
    • A View of the EM Algorithm that Justifies In-cremental, Sparse, and other Variants
    • R. Neal and G. Hinton, A View of the EM Algorithm that Justifies In-cremental, Sparse, and other Variants, Learning in Graphical Models, pp. 355-368, 1998.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.