메뉴 건너뛰기




Volumn , Issue , 2017, Pages 137-169

Unsupervised brain tumor segmentation using knowledge-based fuzzy techniques

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85053975845     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/9780203713419     Document Type: Chapter
Times cited : (8)

References (61)
  • 1
    • 0026870427 scopus 로고
    • Optimization neural networks for the segmentation of magnetic resonance images
    • June
    • S. Amartur, D. Piriano, and Y. Takefuji: Optimization neural networks for the segmentation of magnetic resonance images. IEEE TM1 11, 2 (June 1992), 215-221.
    • (1992) IEEE TM1 , vol.11 , Issue.2 , pp. 215-221
    • Amartur, S.1    Piriano, D.2    Takefuji, Y.3
  • 2
    • 0025445376 scopus 로고
    • 3D segmentation of MR images of the head for 3D display
    • M. Bomans, K. Hohne, U. Tiede, and M. Riemer: 3D segmentation of MR images of the head for 3D display. IEEE TM19 (1990), 177-183.
    • (1990) IEEE TM19 , pp. 177-183
    • Bomans, M.1    Hohne, K.2    Tiede, U.3    Riemer, M.4
  • 3
    • 0021152307 scopus 로고
    • A review of normal tissue hydrogen NMR relaxation times and relaxation mechanism from 1-100 MHz: Dependency on tissue type, NMR frequency, temperature, species, excision and age
    • P. Bottomley, T. Foster, R. Argersinger, and L. Pfeiffer: A review of normal tissue hydrogen NMR relaxation times and relaxation mechanism from 1-100 MHz: Dependency on tissue type, NMR frequency, temperature, species, excision and age. Medical Physics 11 (1984), 425-448.
    • (1984) Medical Physics , vol.11 , pp. 425-448
    • Bottomley, P.1    Foster, T.2    Argersinger, R.3    Pfeiffer, L.4
  • 4
    • 0025242827 scopus 로고
    • Magnetic resonance imaging contrast agents: Theory and application to the central nervous system
    • R. Bronen and G. Sze: Magnetic resonance imaging contrast agents: Theory and application to the central nervous system. Journal of Neurosurgery 73 (1990), 820-839.
    • (1990) Journal of Neurosurgery , vol.73 , pp. 820-839
    • Bronen, R.1    Sze, G.2
  • 6
    • 0028533393 scopus 로고
    • MRI segmentation using fuzzy clustering techniques: Integrating knowledge
    • M. Clark, L. Hall, D. Goldgof, et al: Mri segmentation using fuzzy clustering techniques: Integrating knowledge. IEEE Engineering in Medicine and Biology 13, 5 (1994), 730-742.
    • (1994) IEEE Engineering in Medicine and Biology , vol.13 , Issue.5 , pp. 730-742
    • Clark, M.1    Hall, L.2    Goldgof, D.3
  • 10
    • 85053944940 scopus 로고    scopus 로고
    • MRI measurement of brain tumor response: Comparison of visual metric and automatic segmentation
    • To appear
    • L. Clarke, R. Velthuizen, M. Clark, G. Hall, D. Goldgof, et al: Mri measurement of brain tumor response: Comparison of visual metric and automatic segmentation. To appear, Magnetic Resonance Imaging.
    • Magnetic Resonance Imaging
    • Clarke, L.1    Velthuizen, R.2    Clark, M.3    Hall, G.4    Goldgof, D.5
  • 12
    • 0026403203 scopus 로고
    • Image segmentation: Errors, sensitivity, and uncertainty
    • h IEEE EMB Society (1991), vol. 13, pp. 253-254.
    • (1991) h IEEE EMB Society , vol.13 , pp. 253-254
    • Dellepiane, S.1
  • 13
    • 84941870331 scopus 로고
    • A fuzzy model for the processing and recognition of MR pathological images
    • S. Dellepiane, G. Venturi, and G. Vernazza: A fuzzy model for the processing and recognition of MR pathological images. In: I PM11991 (1991), pp. 444-457.
    • (1991) I PM11991 , pp. 444-457
    • Dellepiane, S.1    Venturi, G.2    Vernazza, G.3
  • 16
    • 85053949254 scopus 로고    scopus 로고
    • Brain tumor facts and figures
    • July 3
    • G.B. Feldmann: Brain tumor facts and figures. The Brain Tumor Society - http://www.btfacts.htm, July 3 1997.
    • (1997) The Brain Tumor Society
    • Feldmann, G.B.1
  • 17
    • 85053982911 scopus 로고
    • Double-blind randomized trial of the anti-progestational agent mifepristone in the treatment of unresectable meningioma, phase iii
    • University South Florida, Tampa, FI., Southwest Oncology Group
    • L. Feun: Double-blind randomized trial of the anti-progestational agent mifepristone in the treatment of unresectable meningioma, phase iii. Tech. Rep. SWOG-9005, University South Florida, Tampa, FI., Southwest Oncology Group, 1995.
    • (1995) Tech. Rep. SWOG-9005
    • Feun, L.1
  • 18
    • 0027625067 scopus 로고
    • Factors affecting perceived tumor volumes in magnetic resonance imaging
    • R. Galloway, R. Maciunas, and A. Failinger: Factors affecting perceived tumor volumes in magnetic resonance imaging. Annals of Biomedical Engineering 21 (1993), 367-375.
    • (1993) Annals of Biomedical Engineering , vol.21 , pp. 367-375
    • Galloway, R.1    Maciunas, R.2    Failinger, A.3
  • 21
    • 0029909342 scopus 로고    scopus 로고
    • Tumor volume determination from MR images by morphological segmentation
    • November
    • P. Gibbs, D. Buckley, S. Blakband, and A. Horsman: Tumor volume determination from MR images by morphological segmentation. Physics in Medicine and Biology 41, 11 (November 1996), 2437-2446.
    • (1996) Physics in Medicine and Biology , vol.41 , Issue.11 , pp. 2437-2446
    • Gibbs, P.1    Buckley, D.2    Blakband, S.3    Horsman, A.4
  • 22
    • 0025754564 scopus 로고
    • Automatic segmentation of brain images: Selection of region extraction methods
    • SPIE
    • L. Gong, and C. Kulikowski: Automatic segmentation of brain images: Selection of region extraction methods. In: Spie Vol. 1450 Biomedical Processing II (1991), SPIE, pp. 144-153.
    • (1991) SPIE Vol. 1450 Biomedical Processing , vol.2 , pp. 144-153
    • Gong, L.1    Kulikowski, C.2
  • 23
    • 0026925678 scopus 로고
    • A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain
    • L. Hall, A. Bensaid, L. Clark et al: A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Transaction on Neural Networks 3, 5 (1992), 672-682.
    • (1992) IEEE Transaction on Neural Networks , vol.3 , Issue.5 , pp. 672-682
    • Hall, L.1    Bensaid, A.2    Clark, L.3
  • 24
    • 0027349175 scopus 로고
    • Basic physics of MR contrast agents and maximization of image contrast
    • R. Hendrick, and E. Haacke: Basic physics of MR contrast agents and maximization of image contrast. JMRI3, 1 (1993), 137-148.
    • (1993) JMRI3 , vol.1 , pp. 137-148
    • Hendrick, R.1    Haacke, E.2
  • 25
    • 44449106556 scopus 로고
    • Automatic system for brain MRI analysis using a novel combination of fuzzy rule-based and automatic clustering techniques
    • February, SPIE, San Diego, CA
    • G. Hillman, C. Chang, H. Ying, et al.: Automatic system for brain MRI analysis using a novel combination of fuzzy rule-based and automatic clustering techniques. In: Medical Imaging 1995: Image Processing (February 1995), SPIE, pp. 16-25. San Diego, CA.
    • (1995) Medical Imaging 1995: Image Processing , pp. 16-25
    • Hillman, G.1    Chang, C.2    Ying, H.3
  • 28
    • 0029377853 scopus 로고
    • Model-based 3D segmentation of multiple sclerosis lesions in magnetic resonance brain images
    • M. Kamber, R. Shingal, D. Collins, G. Francis, and A. Evans: Model-based 3D segmentation of multiple sclerosis lesions in magnetic resonance brain images. IEEE TM114, 3 (1995), 442-453.
    • (1995) IEEE TM114 , vol.3 , pp. 442-453
    • Kamber, M.1    Shingal, R.2    Collins, D.3    Francis, G.4    Evans, A.5
  • 29
    • 0026955664 scopus 로고
    • Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging
    • R. Kikinis, M. Shenton, G. Gerig, et al: Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging. JMRI 2 (1992), 619-629.
    • (1992) JMRI , vol.2 , pp. 619-629
    • Kikinis, R.1    Shenton, M.2    Gerig, G.3
  • 30
    • 0028850328 scopus 로고
    • Classification of brain compartments and head injury lesions by neural networks applied to MRI
    • E. Kischell, N. Kehtarnavaz, G. Hillman, H. Levin, M. Lily, and T. Kent: Classification of brain compartments and head injury lesions by neural networks applied to MRI. Neuroradiology 37(1995), 535-541.
    • (1995) Neuroradiology , vol.37 , pp. 535-541
    • Kischell, E.1    Kehtarnavaz, N.2    Hillman, G.3    Levin, H.4    Lily, M.5    Kent, T.6
  • 32
    • 0028221548 scopus 로고
    • Current imaging techniques for the evaluation of brain neoplasms
    • N. Leeds and E. Jackson: Current imaging techniques for the evaluation of brain neoplasms. Current Science 6 (1994), 254-261.
    • (1994) Current Science , vol.6 , pp. 254-261
    • Leeds, N.1    Jackson, E.2
  • 34
    • 85053987248 scopus 로고
    • Automatic segmentation and tissue labeling of MR brain images
    • December
    • C. Li, D. Goldgof, and L. Hall: Automatic segmentation and tissue labeling of MR brain images. IEEE TMI12, 4 (December 1993), 740-750.
    • (1993) IEEE TMI12 , vol.4 , pp. 740-750
    • Li, C.1    Goldgof, D.2    Hall, L.3
  • 35
    • 0030269760 scopus 로고    scopus 로고
    • Labeling of MR brain images using boolean neural network
    • X. Li, S. Bhide, and M. Kabuka: Labeling of MR brain images using boolean neural network. IEEE TMI 15, 2 (1996), 628-638.
    • (1996) IEEE TMI , vol.15 , Issue.2 , pp. 628-638
    • Li, X.1    Bhide, S.2    Kabuka, M.3
  • 36
    • 85053948207 scopus 로고
    • Year Book Medical Publishers, Inc
    • R.B. Lufkin: The MR1 Manual. Year Book Medical Publishers, Inc., 1990.
    • (1990) The MR1 Manual.
    • Lufkin, R.B.1
  • 37
    • 0002434167 scopus 로고
    • Computer vision on magnetic resonance images
    • September
    • W. Menhardt, and K. Schmidt: Computer vision on magnetic resonance images. Pattern Recognition Letters 8, 2 (September 1988), 73-85.
    • (1988) Pattern Recognition Letters , vol.8 , Issue.2 , pp. 73-85
    • Menhardt, W.1    Schmidt, K.2
  • 38
    • 0029126752 scopus 로고
    • Novel methods of evaluating the growth response patterns of treated brain tumors
    • R. Murtagh, S. Phuphanich, N. Imam, L. Clarke, M. Vaidyanathan, et. al: Novel methods of evaluating the growth response patterns of treated brain tumors. Cancer Control (1995), 293-299.
    • (1995) Cancer Control , pp. 293-299
    • Murtagh, R.1    Phuphanich, S.2    Imam, N.3    Clarke, L.4    Vaidyanathan, M.5
  • 44
    • 0027662763 scopus 로고
    • Neural-network-based segmentation of multi-modal medical images: A comparative and prospective study
    • September
    • M. Ozkan, B. Dawant, and R. Maciunas: Neural-network-based segmentation of multi-modal medical images: A comparative and prospective study. IEEE TMI 12, 3 (September 1993), 534-545.
    • (1993) IEEE TMI , vol.12 , Issue.3 , pp. 534-545
    • Ozkan, M.1    Dawant, B.2    Maciunas, R.3
  • 45
    • 0026517506 scopus 로고
    • Automated lesion detection and lesion quantitation in MR images using autoassociative memory
    • U. Raff and F. Newman: Automated lesion detection and lesion quantitation in MR images using autoassociative memory. Medical Physics 79 (1992), 71-77.
    • (1992) Medical Physics , vol.79 , pp. 71-77
    • Raff, U.1    Newman, F.2
  • 50
    • 0028554738 scopus 로고
    • Multispectral analysis of the brain in magnetic resonance imaging
    • Los Alamitos, CA, U.S.A
    • T. Taxt and A. Lundervold: Multispectral analysis of the brain in magnetic resonance imaging. In: Ieee Workshop on Biomedical Image Analysis (1994), pp. 33-42. Los Alamitos, CA, U.S.A.
    • (1994) IEEE Workshop on Biomedical Image Analysis , pp. 33-42
    • Taxt, T.1    Lundervold, A.2
  • 51
    • 0028497967 scopus 로고
    • Multispectral analysis of the brain using magnetic resonance imaging
    • September
    • T. Taxt and A. Lundervold: Multispectral analysis of the brain using magnetic resonance imaging. IEEE TMI 13, 3 (September 1994), 470-481.
    • (1994) IEEE TMI , vol.13 , Issue.3 , pp. 470-481
    • Taxt, T.1    Lundervold, A.2
  • 54
    • 0021969335 scopus 로고
    • Multispectral analysis of magnetic resonance images
    • January
    • M. Vannier, R. Butterfield, D. Jordan, et al..: Multispectral analysis of magnetic resonance images. Radiology 154,1 (January 1985), 221-224.
    • (1985) Radiology , vol.154 , Issue.1 , pp. 221-224
    • Vannier, M.1    Butterfield, R.2    Jordan, D.3
  • 55
    • 0001598458 scopus 로고
    • Magnetic resonance imaging multispectral tissue classification
    • August
    • M. Vannier, C. Speidel, and D. Rickmans: Magnetic resonance imaging multispectral tissue classification. News Physiol. Sei. 3 (August 1988), 148-154.
    • (1988) News Physiol. Sei. , vol.3 , pp. 148-154
    • Vannier, M.1    Speidel, C.2    Rickmans, D.3
  • 58
    • 0029366255 scopus 로고
    • Unsupervised tumor volume measurement using magnetic resonance brain images
    • R. Velthuizen, S. Phuphanich, L. Clarke, L. Hall, et al..: Unsupervised tumor volume measurement using magnetic resonance brain images. JRMI 5, 5 (1995), 594-605.
    • (1995) JRMI , vol.5 , Issue.5 , pp. 594-605
    • Velthuizen, R.1    Phuphanich, S.2    Clarke, L.3    Hall, L.4
  • 59
    • 0025725615 scopus 로고
    • A graph theoretic approach to segmentation of MR images
    • Z. Wu, and R. Leahy: A graph theoretic approach to segmentation of MR images. In: Spie Vol. 1450 Biomedical Image Processing 11 (1991), pp. 120-132.
    • (1991) SPIE Vol. 1450 Biomedical Image Processing , vol.11 , pp. 120-132
    • Wu, Z.1    Leahy, R.2
  • 60
    • 85034169359 scopus 로고
    • Image segmentation via edge contour finding: A graph theoretic approach
    • Z. Wu, and R. Leahy: Image segmentation via edge contour finding: A graph theoretic approach. In: Ieee Computer Vision and Pattern Recognition (1992), pp. 613-619.
    • (1992) IEEE Computer Vision and Pattern Recognition , pp. 613-619
    • Wu, Z.1    Leahy, R.2
  • 61
    • 0032034227 scopus 로고    scopus 로고
    • Automatic Tumor Segmentation Using Knowledge-Based Techniques
    • April
    • M. Clark, L. Hall, D. Goldgof, et al..: Automatic Tumor Segmentation Using Knowledge-Based Techniques. IEEE: Tm1, 17,2 (April 1998).
    • (1998) IEEE: Tm1 , vol.17 , Issue.2
    • Clark, M.1    Hall, L.2    Goldgof, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.