-
2
-
-
33746355958
-
Axonal transport and Alzheimer's disease
-
Stokin G.B., and Goldstein L.S. Axonal transport and Alzheimer's disease. Annu Rev Biochem 75 (2006) 607-627
-
(2006)
Annu Rev Biochem
, vol.75
, pp. 607-627
-
-
Stokin, G.B.1
Goldstein, L.S.2
-
3
-
-
34748819496
-
Mechanisms of axon degeneration: from development to disease
-
Saxena S., and Caroni P. Mechanisms of axon degeneration: from development to disease. Prog Neurobiol 83 (2007) 174-191
-
(2007)
Prog Neurobiol
, vol.83
, pp. 174-191
-
-
Saxena, S.1
Caroni, P.2
-
4
-
-
23744445580
-
A compensatory subpopulation of motor neurons in a mouse model of amyotrophic lateral sclerosis
-
Schaefer A.M., Sanes J.R., and Lichtman J.W. A compensatory subpopulation of motor neurons in a mouse model of amyotrophic lateral sclerosis. J Comp Neurol 490 (2005) 209-219
-
(2005)
J Comp Neurol
, vol.490
, pp. 209-219
-
-
Schaefer, A.M.1
Sanes, J.R.2
Lichtman, J.W.3
-
5
-
-
36049044386
-
Message in a bottle: long-range retrograde signaling in the nervous system
-
Ibanez C.F. Message in a bottle: long-range retrograde signaling in the nervous system. Trends Cell Biol 17 (2007) 519-528
-
(2007)
Trends Cell Biol
, vol.17
, pp. 519-528
-
-
Ibanez, C.F.1
-
6
-
-
33644507718
-
Cytoplasmic dynein/dynactin function and dysfunction in motor neurons
-
Levy J.R., and Holzbaur E.L. Cytoplasmic dynein/dynactin function and dysfunction in motor neurons. Int J Dev Neurosci 24 (2006) 103-111
-
(2006)
Int J Dev Neurosci
, vol.24
, pp. 103-111
-
-
Levy, J.R.1
Holzbaur, E.L.2
-
7
-
-
50349090965
-
Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics
-
Hirokawa N., and Noda Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev 88 (2008) 1089-1118
-
(2008)
Physiol Rev
, vol.88
, pp. 1089-1118
-
-
Hirokawa, N.1
Noda, Y.2
-
8
-
-
0037459061
-
The molecular motor toolbox for intracellular transport
-
Vale R.D. The molecular motor toolbox for intracellular transport. Cell 112 (2003) 467-480
-
(2003)
Cell
, vol.112
, pp. 467-480
-
-
Vale, R.D.1
-
9
-
-
34547541598
-
A Drosophila kinesin required for synaptic bouton formation and synaptic vesicle transport
-
Mutations in a Kinesin-3 prevent synapse formation at the Drosophila neuromuscular junction, although axon outgrowth and guidance are normal. Not only are synaptic vesicles stranded in the cell soma but also form few active zones and growth cones do not undergo the correct remodeling into boutons. The phenotype illustrates the selectivity of this Kinesin-3 motor for synaptogenesis.
-
Pack-Chung E., Kurshan P.T., Dickman D.K., and Schwarz T.L. A Drosophila kinesin required for synaptic bouton formation and synaptic vesicle transport. Nat Neurosci 10 (2007) 980-989. Mutations in a Kinesin-3 prevent synapse formation at the Drosophila neuromuscular junction, although axon outgrowth and guidance are normal. Not only are synaptic vesicles stranded in the cell soma but also form few active zones and growth cones do not undergo the correct remodeling into boutons. The phenotype illustrates the selectivity of this Kinesin-3 motor for synaptogenesis.
-
(2007)
Nat Neurosci
, vol.10
, pp. 980-989
-
-
Pack-Chung, E.1
Kurshan, P.T.2
Dickman, D.K.3
Schwarz, T.L.4
-
10
-
-
34447130225
-
Syntabulin-kinesin-1 family member 5B-mediated axonal transport contributes to activity-dependent presynaptic assembly
-
An intriguing case is made for syntabulin as an adaptor protein between kif5B and vesicles carrying active zone components. Tagged syntabulin and bassoon colocalize on a subset of PTVs that move anterogradely. RNAi against syntabulin reduced axonal and increased somatic bassoon indicating that syntabulin is not only another active zone protein but is also engaged in transport.
-
Cai Q., Pan P.Y., and Sheng Z.H. Syntabulin-kinesin-1 family member 5B-mediated axonal transport contributes to activity-dependent presynaptic assembly. J Neurosci 27 (2007) 7284-7296. An intriguing case is made for syntabulin as an adaptor protein between kif5B and vesicles carrying active zone components. Tagged syntabulin and bassoon colocalize on a subset of PTVs that move anterogradely. RNAi against syntabulin reduced axonal and increased somatic bassoon indicating that syntabulin is not only another active zone protein but is also engaged in transport.
-
(2007)
J Neurosci
, vol.27
, pp. 7284-7296
-
-
Cai, Q.1
Pan, P.Y.2
Sheng, Z.H.3
-
11
-
-
0035137129
-
Assembling the presynaptic active zone: a characterization of an active one precursor vesicle
-
Zhai R.G., Vardinon-Friedman H., Cases-Langhoff C., Becker B., Gundelfinger E.D., Ziv N.E., and Garner C.C. Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 29 (2001) 131-143
-
(2001)
Neuron
, vol.29
, pp. 131-143
-
-
Zhai, R.G.1
Vardinon-Friedman, H.2
Cases-Langhoff, C.3
Becker, B.4
Gundelfinger, E.D.5
Ziv, N.E.6
Garner, C.C.7
-
13
-
-
13544262428
-
Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development
-
Nakata K., Abrams B., Grill B., Goncharov A., Huang X., Chisholm A.D., and Jin Y. Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell 120 (2005) 407-420
-
(2005)
Cell
, vol.120
, pp. 407-420
-
-
Nakata, K.1
Abrams, B.2
Grill, B.3
Goncharov, A.4
Huang, X.5
Chisholm, A.D.6
Jin, Y.7
-
14
-
-
34547473554
-
Control of a kinesin-cargo linkage mechanism by JNK pathway kinases
-
JNK, a MAP kinase, is known to bind JIP1, a kinesin adaptor protein, and is transported down the axon. This paper shows that the ubiquitinylation, MAPKKK, and JNK pathway that controls synapse number at the fly NMJ also controls the association of kinesin light chain with JIP1. Kinesin-associated JNK therefore is a regulator of kinesin-cargo interactions-a possible explanation for the synaptic phenotypes of the signaling pathway.
-
Horiuchi D., Collins C.A., Bhat P., Barkus R.V., Diantonio A., and Saxton W.M. Control of a kinesin-cargo linkage mechanism by JNK pathway kinases. Curr Biol 17 (2007) 1313-1317. JNK, a MAP kinase, is known to bind JIP1, a kinesin adaptor protein, and is transported down the axon. This paper shows that the ubiquitinylation, MAPKKK, and JNK pathway that controls synapse number at the fly NMJ also controls the association of kinesin light chain with JIP1. Kinesin-associated JNK therefore is a regulator of kinesin-cargo interactions-a possible explanation for the synaptic phenotypes of the signaling pathway.
-
(2007)
Curr Biol
, vol.17
, pp. 1313-1317
-
-
Horiuchi, D.1
Collins, C.A.2
Bhat, P.3
Barkus, R.V.4
Diantonio, A.5
Saxton, W.M.6
-
15
-
-
38049017378
-
'JIP'ing along the axon: the complex roles of JIPs in axonal transport
-
Koushika S.P. 'JIP'ing along the axon: the complex roles of JIPs in axonal transport. Bioessays 30 (2008) 10-14
-
(2008)
Bioessays
, vol.30
, pp. 10-14
-
-
Koushika, S.P.1
-
16
-
-
33845663953
-
Unloading kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-terminal kinase pathway
-
Stagi M., Gorlovoy P., Larionov S., Takahashi K., and Neumann H. Unloading kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-terminal kinase pathway. FASEB J 20 (2006) 2573-2575
-
(2006)
FASEB J
, vol.20
, pp. 2573-2575
-
-
Stagi, M.1
Gorlovoy, P.2
Larionov, S.3
Takahashi, K.4
Neumann, H.5
-
17
-
-
33745520772
-
JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport
-
Morfini G., Pigino G., Szebenyi G., You Y., Pollema S., and Brady S.T. JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nat Neurosci 9 (2006) 907-916
-
(2006)
Nat Neurosci
, vol.9
, pp. 907-916
-
-
Morfini, G.1
Pigino, G.2
Szebenyi, G.3
You, Y.4
Pollema, S.5
Brady, S.T.6
-
18
-
-
49149112606
-
Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons
-
The authors show that the direction of trafficking of a vesicle can be controlled by whether or not kinesin is recruited to the vesicle. Recruitment is promoted by the phosphorylation of Huntingtin by Akt, placing Huntingtin at a key control point for axonal transport.
-
Colin E., Zala D., Liot G., Rangone H., Borrell-Pages M., Li X.J., Saudou F., and Humbert S. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J 27 (2008) 2124-2134. The authors show that the direction of trafficking of a vesicle can be controlled by whether or not kinesin is recruited to the vesicle. Recruitment is promoted by the phosphorylation of Huntingtin by Akt, placing Huntingtin at a key control point for axonal transport.
-
(2008)
EMBO J
, vol.27
, pp. 2124-2134
-
-
Colin, E.1
Zala, D.2
Liot, G.3
Rangone, H.4
Borrell-Pages, M.5
Li, X.J.6
Saudou, F.7
Humbert, S.8
-
19
-
-
3142636768
-
Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules
-
Gauthier L.R., Charrin B.C., Borrell-Pages M., Dompierre J.P., Rangone H., Cordelieres F.P., De Mey J., MacDonald M.E., Lessmann V., Humbert S., et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118 (2004) 127-138
-
(2004)
Cell
, vol.118
, pp. 127-138
-
-
Gauthier, L.R.1
Charrin, B.C.2
Borrell-Pages, M.3
Dompierre, J.P.4
Rangone, H.5
Cordelieres, F.P.6
De Mey, J.7
MacDonald, M.E.8
Lessmann, V.9
Humbert, S.10
-
20
-
-
34547193908
-
Huntingtin facilitates dynein/dynactin-mediated vesicle transport
-
The authors offer a mechanism by which Huntingtin (Htt) participates in retrograde transport. Htt binds directly to dynein intermediate chain and serves as a scaffold for motor interactions with cargos. Antibodies to Htt compromised vesicle movements on microtubules in both directions, consistent with Htt interactions with kinesin as well.
-
Caviston J.P., Ross J.L., Antony S.M., Tokito M., and Holzbaur E.L. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc Natl Acad Sci U S A 104 (2007) 10045-10050. The authors offer a mechanism by which Huntingtin (Htt) participates in retrograde transport. Htt binds directly to dynein intermediate chain and serves as a scaffold for motor interactions with cargos. Antibodies to Htt compromised vesicle movements on microtubules in both directions, consistent with Htt interactions with kinesin as well.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 10045-10050
-
-
Caviston, J.P.1
Ross, J.L.2
Antony, S.M.3
Tokito, M.4
Holzbaur, E.L.5
-
21
-
-
0141750470
-
Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila
-
Gunawardena S., Her L.S., Brusch R.G., Laymon R.A., Niesman I.R., Gordesky-Gold B., Sintasath L., Bonini N.M., and Goldstein L.S. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40 (2003) 25-40
-
(2003)
Neuron
, vol.40
, pp. 25-40
-
-
Gunawardena, S.1
Her, L.S.2
Brusch, R.G.3
Laymon, R.A.4
Niesman, I.R.5
Gordesky-Gold, B.6
Sintasath, L.7
Bonini, N.M.8
Goldstein, L.S.9
-
22
-
-
55849144680
-
Molecular mechanisms of presynaptic differentiation
-
Jin Y., and Garner C.C. Molecular mechanisms of presynaptic differentiation. Annu Rev Cell Dev Biol 24 (2008) 237-262
-
(2008)
Annu Rev Cell Dev Biol
, vol.24
, pp. 237-262
-
-
Jin, Y.1
Garner, C.C.2
-
23
-
-
33751396164
-
Protein sorting in the synaptic vesicle life cycle
-
Bonanomi D., Benfenati F., and Valtorta F. Protein sorting in the synaptic vesicle life cycle. Prog Neurobiol 80 (2006) 177-217
-
(2006)
Prog Neurobiol
, vol.80
, pp. 177-217
-
-
Bonanomi, D.1
Benfenati, F.2
Valtorta, F.3
-
24
-
-
3342965153
-
The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans
-
Klopfenstein D.R., and Vale R.D. The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans. Mol Biol Cell 15 (2004) 3729-3739
-
(2004)
Mol Biol Cell
, vol.15
, pp. 3729-3739
-
-
Klopfenstein, D.R.1
Vale, R.D.2
-
25
-
-
33750805030
-
Molecular anatomy of a trafficking organelle
-
Takamori S., Holt M., Stenius K., Lemke E.A., Gronborg M., Riedel D., Urlaub H., Schenck S., Brugger B., Ringler P., et al. Molecular anatomy of a trafficking organelle. Cell 127 (2006) 831-846
-
(2006)
Cell
, vol.127
, pp. 831-846
-
-
Takamori, S.1
Holt, M.2
Stenius, K.3
Lemke, E.A.4
Gronborg, M.5
Riedel, D.6
Urlaub, H.7
Schenck, S.8
Brugger, B.9
Ringler, P.10
-
26
-
-
28444496758
-
APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila
-
Horiuchi D., Barkus R.V., Pilling A.D., Gassman A., and Saxton W.M. APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila. Curr Biol 15 (2005) 2137-2141
-
(2005)
Curr Biol
, vol.15
, pp. 2137-2141
-
-
Horiuchi, D.1
Barkus, R.V.2
Pilling, A.D.3
Gassman, A.4
Saxton, W.M.5
-
27
-
-
17144420913
-
Direct observation demonstrates that Liprin-alpha is required for trafficking of synaptic vesicles
-
Miller K.E., DeProto J., Kaufmann N., Patel B.N., Duckworth A., and Van Vactor D. Direct observation demonstrates that Liprin-alpha is required for trafficking of synaptic vesicles. Curr Biol 15 (2005) 684-689
-
(2005)
Curr Biol
, vol.15
, pp. 684-689
-
-
Miller, K.E.1
DeProto, J.2
Kaufmann, N.3
Patel, B.N.4
Duckworth, A.5
Van Vactor, D.6
-
28
-
-
0042970608
-
The kinesin-associated protein UNC-76 is required for axonal transport in the Drosophila nervous system
-
Gindhart J.G., Chen J., Faulkner M., Gandhi R., Doerner K., Wisniewski T., and Nandlestadt A. The kinesin-associated protein UNC-76 is required for axonal transport in the Drosophila nervous system. Mol Biol Cell 14 (2003) 3356-3365
-
(2003)
Mol Biol Cell
, vol.14
, pp. 3356-3365
-
-
Gindhart, J.G.1
Chen, J.2
Faulkner, M.3
Gandhi, R.4
Doerner, K.5
Wisniewski, T.6
Nandlestadt, A.7
-
29
-
-
33845273849
-
Hierarchical assembly of presynaptic components in defined C. elegans synapses
-
Examining a set of en passant synapses made by a selected C. elegans neuron, the authors focus on two active zone proteins, syd-1 and the kinesin-associated protein syd-2/liprinα, to determine which active zone and synaptic vesicle components depend on them for incorporation into the synapse. In the process, they also sort out which synaptic molecules and organelles depend on the Kinesin-3 motor unc-104.
-
Patel M.R., Lehrman E.K., Poon V.Y., Crump J.G., Zhen M., Bargmann C.I., and Shen K. Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat Neurosci 9 (2006) 1488-1498. Examining a set of en passant synapses made by a selected C. elegans neuron, the authors focus on two active zone proteins, syd-1 and the kinesin-associated protein syd-2/liprinα, to determine which active zone and synaptic vesicle components depend on them for incorporation into the synapse. In the process, they also sort out which synaptic molecules and organelles depend on the Kinesin-3 motor unc-104.
-
(2006)
Nat Neurosci
, vol.9
, pp. 1488-1498
-
-
Patel, M.R.1
Lehrman, E.K.2
Poon, V.Y.3
Crump, J.G.4
Zhen, M.5
Bargmann, C.I.6
Shen, K.7
-
30
-
-
37749000849
-
Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release
-
Guillaud L., Wong R., and Hirokawa N. Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nat Cell Biol 10 (2008) 19-29
-
(2008)
Nat Cell Biol
, vol.10
, pp. 19-29
-
-
Guillaud, L.1
Wong, R.2
Hirokawa, N.3
-
31
-
-
5444235717
-
Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons
-
Su Q., Cai Q., Gerwin C., Smith C.L., and Sheng Z.H. Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nat Cell Biol 6 (2004) 941-953
-
(2004)
Nat Cell Biol
, vol.6
, pp. 941-953
-
-
Su, Q.1
Cai, Q.2
Gerwin, C.3
Smith, C.L.4
Sheng, Z.H.5
-
34
-
-
33646759268
-
Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons
-
Pilling A.D., Horiuchi D., Lively C.M., and Saxton W.M. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17 (2006) 2057-2068
-
(2006)
Mol Biol Cell
, vol.17
, pp. 2057-2068
-
-
Pilling, A.D.1
Horiuchi, D.2
Lively, C.M.3
Saxton, W.M.4
-
35
-
-
0037137704
-
Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein
-
Stowers R.S., Megeath L.J., Gorska-Andrzejak J., Meinertzhagen I.A., and Schwarz T.L. Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 36 (2002) 1063-1077
-
(2002)
Neuron
, vol.36
, pp. 1063-1077
-
-
Stowers, R.S.1
Megeath, L.J.2
Gorska-Andrzejak, J.3
Meinertzhagen, I.A.4
Schwarz, T.L.5
-
36
-
-
33646768127
-
Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent
-
Biochemical studies establish a model for mitochondrial motility in which Miro recruits Milton that binds to kinesin heavy chain. This paper also reports alternatively spliced forms of milton that differ in whether or not they recruit Khc to mitochondria.
-
Glater E.E., Megeath L.J., Stowers R.S., and Schwarz T.L. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173 (2006) 545-557. Biochemical studies establish a model for mitochondrial motility in which Miro recruits Milton that binds to kinesin heavy chain. This paper also reports alternatively spliced forms of milton that differ in whether or not they recruit Khc to mitochondria.
-
(2006)
J Cell Biol
, vol.173
, pp. 545-557
-
-
Glater, E.E.1
Megeath, L.J.2
Stowers, R.S.3
Schwarz, T.L.4
-
37
-
-
33646117742
-
The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking
-
Fransson S., Ruusala A., and Aspenstrom P. The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun 344 (2006) 500-510
-
(2006)
Biochem Biophys Res Commun
, vol.344
, pp. 500-510
-
-
Fransson, S.1
Ruusala, A.2
Aspenstrom, P.3
-
38
-
-
23044432581
-
The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses
-
Guo X., Macleod G.T., Wellington A., Hu F., Panchumarthi S., Schoenfield M., Marin L., Charlton M.P., Atwood H.L., and Zinsmaier K.E. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47 (2005) 379-393
-
(2005)
Neuron
, vol.47
, pp. 379-393
-
-
Guo, X.1
Macleod, G.T.2
Wellington, A.3
Hu, F.4
Panchumarthi, S.5
Schoenfield, M.6
Marin, L.7
Charlton, M.P.8
Atwood, H.L.9
Zinsmaier, K.E.10
-
39
-
-
5444257615
-
Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway
-
Frederick R.L., McCaffery J.M., Cunningham K.W., Okamoto K., and Shaw J.M. Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. J Cell Biol 167 (2004) 87-98
-
(2004)
J Cell Biol
, vol.167
, pp. 87-98
-
-
Frederick, R.L.1
McCaffery, J.M.2
Cunningham, K.W.3
Okamoto, K.4
Shaw, J.M.5
-
40
-
-
24944534881
-
Syntabulin-mediated anterograde transport of mitochondria along neuronal processes
-
Cai Q., Gerwin C., and Sheng Z.H. Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J Cell Biol 170 (2005) 959-969
-
(2005)
J Cell Biol
, vol.170
, pp. 959-969
-
-
Cai, Q.1
Gerwin, C.2
Sheng, Z.H.3
-
41
-
-
35948946893
-
Association of the kinesin-binding domain of RanBP2 to KIF5B and KIF5C determines mitochondria localization and function
-
Cho K.I., Cai Y., Yi H., Yeh A., Aslanukov A., and Ferreira P.A. Association of the kinesin-binding domain of RanBP2 to KIF5B and KIF5C determines mitochondria localization and function. Traffic 8 (2007) 1722-1735
-
(2007)
Traffic
, vol.8
, pp. 1722-1735
-
-
Cho, K.I.1
Cai, Y.2
Yi, H.3
Yeh, A.4
Aslanukov, A.5
Ferreira, P.A.6
-
42
-
-
27644441592
-
The novel protein KBP regulates mitochondria localization by interaction with a kinesin-like protein
-
Wozniak M.J., Melzer M., Dorner C., Haring H.U., and Lammers R. The novel protein KBP regulates mitochondria localization by interaction with a kinesin-like protein. BMC Cell Biol 6 (2005) 35
-
(2005)
BMC Cell Biol
, vol.6
, pp. 35
-
-
Wozniak, M.J.1
Melzer, M.2
Dorner, C.3
Haring, H.U.4
Lammers, R.5
-
43
-
-
37749053855
-
Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation
-
By video microscopy, the authors show that syntaphilin is selectively on immobile mitochondria within axons and a knockout for this gene increases the percentage of motile mitochondria. Syntaphilin, they conclude, can anchor mitochondria in place by binding them to microtubules.
-
Kang J.S., Tian J.H., Pan P.Y., Zald P., Li C., Deng C., and Sheng Z.H. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132 (2008) 137-148. By video microscopy, the authors show that syntaphilin is selectively on immobile mitochondria within axons and a knockout for this gene increases the percentage of motile mitochondria. Syntaphilin, they conclude, can anchor mitochondria in place by binding them to microtubules.
-
(2008)
Cell
, vol.132
, pp. 137-148
-
-
Kang, J.S.1
Tian, J.H.2
Pan, P.Y.3
Zald, P.4
Li, C.5
Deng, C.6
Sheng, Z.H.7
-
44
-
-
0037933255
-
Mitochondrial movement and positioning in axons: the role of growth factor signaling
-
Chada S.R., and Hollenbeck P.J. Mitochondrial movement and positioning in axons: the role of growth factor signaling. J Exp Biol 206 (2003) 1985-1992
-
(2003)
J Exp Biol
, vol.206
, pp. 1985-1992
-
-
Chada, S.R.1
Hollenbeck, P.J.2
-
45
-
-
3343021928
-
Nerve growth factor signaling regulates motility and docking of axonal mitochondria
-
Chada S.R., and Hollenbeck P.J. Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr Biol 14 (2004) 1272-1276
-
(2004)
Curr Biol
, vol.14
, pp. 1272-1276
-
-
Chada, S.R.1
Hollenbeck, P.J.2
-
46
-
-
33745952665
-
Mitochondrial trafficking to synapses in cultured primary cortical neurons
-
Chang D.T., Honick A.S., and Reynolds I.J. Mitochondrial trafficking to synapses in cultured primary cortical neurons. J Neurosci 26 (2006) 7035-7045
-
(2006)
J Neurosci
, vol.26
, pp. 7035-7045
-
-
Chang, D.T.1
Honick, A.S.2
Reynolds, I.J.3
-
47
-
-
30544452263
-
The axonal transport of mitochondria
-
Hollenbeck P.J., and Saxton W.M. The axonal transport of mitochondria. J Cell Sci 118 (2005) 5411-5419
-
(2005)
J Cell Sci
, vol.118
, pp. 5411-5419
-
-
Hollenbeck, P.J.1
Saxton, W.M.2
-
48
-
-
0041819756
-
Glutamate decreases mitochondrial size and movement in primary forebrain neurons
-
Rintoul G.L., Filiano A.J., Brocard J.B., Kress G.J., and Reynolds I.J. Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J Neurosci 23 (2003) 7881-7888
-
(2003)
J Neurosci
, vol.23
, pp. 7881-7888
-
-
Rintoul, G.L.1
Filiano, A.J.2
Brocard, J.B.3
Kress, G.J.4
Reynolds, I.J.5
-
49
-
-
33745738979
-
Mitochondrial dynamics and Ca2+ signaling
-
Szabadkai G., Simoni A.M., Bianchi K., De Stefani D., Leo S., Wieckowski M.R., and Rizzuto R. Mitochondrial dynamics and Ca2+ signaling. Biochim Biophys Acta 1763 (2006) 442-449
-
(2006)
Biochim Biophys Acta
, vol.1763
, pp. 442-449
-
-
Szabadkai, G.1
Simoni, A.M.2
Bianchi, K.3
De Stefani, D.4
Leo, S.5
Wieckowski, M.R.6
Rizzuto, R.7
-
50
-
-
9444226972
-
Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit
-
Yi M., Weaver D., and Hajnoczky G. Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167 (2004) 661-672
-
(2004)
J Cell Biol
, vol.167
, pp. 661-672
-
-
Yi, M.1
Weaver, D.2
Hajnoczky, G.3
-
51
-
-
0037458579
-
Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis
-
Fransson A., Ruusala A., and Aspenstrom P. Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J Biol Chem 278 (2003) 6495-6502
-
(2003)
J Biol Chem
, vol.278
, pp. 6495-6502
-
-
Fransson, A.1
Ruusala, A.2
Aspenstrom, P.3
-
52
-
-
33749379588
-
Milton controls the early acquisition of mitochondria by Drosophila oocytes
-
Cox R.T., and Spradling A.C. Milton controls the early acquisition of mitochondria by Drosophila oocytes. Development 133 (2006) 3371-3377
-
(2006)
Development
, vol.133
, pp. 3371-3377
-
-
Cox, R.T.1
Spradling, A.C.2
-
53
-
-
33748749048
-
Mapping the GRIF-1 binding domain of the kinesin, KIF5C, substantiates a role for GRIF-1 as an adaptor protein in the anterograde trafficking of cargoes
-
Smith M.J., Pozo K., Brickley K., and Stephenson F.A. Mapping the GRIF-1 binding domain of the kinesin, KIF5C, substantiates a role for GRIF-1 as an adaptor protein in the anterograde trafficking of cargoes. J Biol Chem 281 (2006) 27216-27228
-
(2006)
J Biol Chem
, vol.281
, pp. 27216-27228
-
-
Smith, M.J.1
Pozo, K.2
Brickley, K.3
Stephenson, F.A.4
-
54
-
-
34247583996
-
Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins
-
Hart G.W., Housley M.P., and Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446 (2007) 1017-1022
-
(2007)
Nature
, vol.446
, pp. 1017-1022
-
-
Hart, G.W.1
Housley, M.P.2
Slawson, C.3
-
55
-
-
0042090275
-
Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity
-
Iyer S.P., and Hart G.W. Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity. J Biol Chem 278 (2003) 24608-24616
-
(2003)
J Biol Chem
, vol.278
, pp. 24608-24616
-
-
Iyer, S.P.1
Hart, G.W.2
-
56
-
-
44849094155
-
The chemical neurobiology of carbohydrates
-
Murrey H.E., and Hsieh-Wilson L.C. The chemical neurobiology of carbohydrates. Chem Rev 108 (2008) 1708-1731
-
(2008)
Chem Rev
, vol.108
, pp. 1708-1731
-
-
Murrey, H.E.1
Hsieh-Wilson, L.C.2
-
57
-
-
39749104251
-
Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance
-
Yang X., Ongusaha P.P., Miles P.D., Havstad J.C., Zhang F., So W.V., Kudlow J.E., Michell R.H., Olefsky J.M., Field S.J., et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451 (2008) 964-969
-
(2008)
Nature
, vol.451
, pp. 964-969
-
-
Yang, X.1
Ongusaha, P.P.2
Miles, P.D.3
Havstad, J.C.4
Zhang, F.5
So, W.V.6
Kudlow, J.E.7
Michell, R.H.8
Olefsky, J.M.9
Field, S.J.10
-
58
-
-
3042634127
-
A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons
-
Morfini G., Szebenyi G., Brown H., Pant H.C., Pigino G., DeBoer S., Beffert U., and Brady S.T. A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J 23 (2004) 2235-2245
-
(2004)
EMBO J
, vol.23
, pp. 2235-2245
-
-
Morfini, G.1
Szebenyi, G.2
Brown, H.3
Pant, H.C.4
Pigino, G.5
DeBoer, S.6
Beffert, U.7
Brady, S.T.8
-
59
-
-
0036469290
-
Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility
-
Morfini G., Szebenyi G., Elluru R., Ratner N., and Brady S.T. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J 21 (2002) 281-293
-
(2002)
EMBO J
, vol.21
, pp. 281-293
-
-
Morfini, G.1
Szebenyi, G.2
Elluru, R.3
Ratner, N.4
Brady, S.T.5
-
60
-
-
0037126703
-
The heavy chain of conventional kinesin interacts with the SNARE proteins SNAP25 and SNAP23
-
Diefenbach R.J., Diefenbach E., Douglas M.W., and Cunningham A.L. The heavy chain of conventional kinesin interacts with the SNARE proteins SNAP25 and SNAP23. Biochemistry 41 (2002) 14906-14915
-
(2002)
Biochemistry
, vol.41
, pp. 14906-14915
-
-
Diefenbach, R.J.1
Diefenbach, E.2
Douglas, M.W.3
Cunningham, A.L.4
-
61
-
-
33746645123
-
Calsyntenin-1 docks vesicular cargo to kinesin-1
-
Konecna A., Frischknecht R., Kinter J., Ludwig A., Steuble M., Meskenaite V., Indermuhle M., Engel M., Cen C., Mateos J.M., et al. Calsyntenin-1 docks vesicular cargo to kinesin-1. Mol Biol Cell 17 (2006) 3651-3663
-
(2006)
Mol Biol Cell
, vol.17
, pp. 3651-3663
-
-
Konecna, A.1
Frischknecht, R.2
Kinter, J.3
Ludwig, A.4
Steuble, M.5
Meskenaite, V.6
Indermuhle, M.7
Engel, M.8
Cen, C.9
Mateos, J.M.10
-
62
-
-
0347382405
-
Beta-dystrobrevin interacts directly with kinesin heavy chain in brain
-
Macioce P., Gambara G., Bernassola M., Gaddini L., Torreri P., Macchia G., Ramoni C., Ceccarini M., and Petrucci T.C. Beta-dystrobrevin interacts directly with kinesin heavy chain in brain. J Cell Sci 116 (2003) 4847-4856
-
(2003)
J Cell Sci
, vol.116
, pp. 4847-4856
-
-
Macioce, P.1
Gambara, G.2
Bernassola, M.3
Gaddini, L.4
Torreri, P.5
Macchia, G.6
Ramoni, C.7
Ceccarini, M.8
Petrucci, T.C.9
-
63
-
-
0038176515
-
Association of the kinesin motor KIF1A with the multimodular protein liprin-alpha
-
Shin H., Wyszynski M., Huh K.H., Valtschanoff J.G., Lee J.R., Ko J., Streuli M., Weinberg R.J., Sheng M., and Kim E. Association of the kinesin motor KIF1A with the multimodular protein liprin-alpha. J Biol Chem 278 (2003) 11393-11401
-
(2003)
J Biol Chem
, vol.278
, pp. 11393-11401
-
-
Shin, H.1
Wyszynski, M.2
Huh, K.H.3
Valtschanoff, J.G.4
Lee, J.R.5
Ko, J.6
Streuli, M.7
Weinberg, R.J.8
Sheng, M.9
Kim, E.10
-
64
-
-
33845993250
-
Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells
-
Cai D., Hoppe A.D., Swanson J.A., and Verhey K.J. Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells. J Cell Biol 176 (2007) 51-63
-
(2007)
J Cell Biol
, vol.176
, pp. 51-63
-
-
Cai, D.1
Hoppe, A.D.2
Swanson, J.A.3
Verhey, K.J.4
-
65
-
-
33845967100
-
Two binding partners cooperate to activate the molecular motor Kinesin-1
-
Blasius T.L., Cai D., Jih G.T., Toret C.P., and Verhey K.J. Two binding partners cooperate to activate the molecular motor Kinesin-1. J Cell Biol 176 (2007) 11-17
-
(2007)
J Cell Biol
, vol.176
, pp. 11-17
-
-
Blasius, T.L.1
Cai, D.2
Jih, G.T.3
Toret, C.P.4
Verhey, K.J.5
-
66
-
-
34548702192
-
Regulation of intracellular HAP1 trafficking
-
Rong J., Li S.H., and Li X.J. Regulation of intracellular HAP1 trafficking. J Neurosci Res 85 (2007) 3025-3029
-
(2007)
J Neurosci Res
, vol.85
, pp. 3025-3029
-
-
Rong, J.1
Li, S.H.2
Li, X.J.3
|