-
1
-
-
0032535954
-
-
10.1126/science.279.5349.335
-
J. T. Yates, Jr., Science 10.1126/science.279.5349.335 279, 335 (1998).
-
(1998)
Science
, vol.279
, pp. 335
-
-
Yates Jr., J.T.1
-
2
-
-
0037051030
-
-
10.1016/S0039-6028(01)01553-9
-
S. F. Bent, Surf. Sci. 10.1016/S0039-6028(01)01553-9 500, 879 (2002).
-
(2002)
Surf. Sci.
, vol.500
, pp. 879
-
-
Bent, S.F.1
-
3
-
-
0001059107
-
-
10.1063/1.461498
-
Y. Taguchi, M. Fujisawa, T. Takaoka, T. Okada, and M. Nishijima, J. Chem. Phys. 10.1063/1.461498 95, 6870 (1991).
-
(1991)
J. Chem. Phys.
, vol.95
, pp. 6870
-
-
Taguchi, Y.1
Fujisawa, M.2
Takaoka, T.3
Okada, T.4
Nishijima, M.5
-
5
-
-
0001080049
-
-
10.1116/1.581228
-
G. P. Lopinski, T. M. Fortier, D. J. Moffatt, and R. A. Wolkow, J. Vac. Sci. Technol. A 10.1116/1.581228 16, 1037 (1998).
-
(1998)
J. Vac. Sci. Technol. a
, vol.16
, pp. 1037
-
-
Lopinski, G.P.1
Fortier, T.M.2
Moffatt, D.J.3
Wolkow, R.A.4
-
8
-
-
0001197411
-
-
10.1063/1.475945
-
S. Gokhale, P. Trischberger, D. Menzel, W. Widdra, H. Dröge, H.-P. Steinrück, U. Birkenheuer, U. Gutdeutsch, and N. Rösch, J. Chem. Phys. 10.1063/1.475945 108, 5554 (1998).
-
(1998)
J. Chem. Phys.
, vol.108
, pp. 5554
-
-
Gokhale, S.1
Trischberger, P.2
Menzel, D.3
Widdra, W.4
Dröge, H.5
Steinrück, H.-P.6
Birkenheuer, U.7
Gutdeutsch, U.8
Rösch, N.9
-
9
-
-
0032137977
-
-
10.1016/S0039-6028(98)00336-7
-
M. J. Kong, A. V. Teplyakov, J. G. Lyubovitsky, and S. F. Bent, Surf. Sci. 10.1016/S0039-6028(98)00336-7 411, 286 (1998).
-
(1998)
Surf. Sci.
, vol.411
, pp. 286
-
-
Kong, M.J.1
Teplyakov, A.V.2
Lyubovitsky, J.G.3
Bent, S.F.4
-
10
-
-
0000135566
-
-
10.1146/annurev.physchem.50.1.413
-
R. A. Wolkow, Annu. Rev. Phys. Chem. 10.1146/annurev.physchem.50.1.413 50, 413 (1999).
-
(1999)
Annu. Rev. Phys. Chem.
, vol.50
, pp. 413
-
-
Wolkow, R.A.1
-
12
-
-
0001487727
-
-
10.1063/1.480816
-
M. Staufer, U. Birkenheuer, T. Belling, F. Nörtemann, N. Rösch, W. Widdra, K. L. Kostov, T. Moritz, and D. Menzel, J. Chem. Phys. 10.1063/1.480816 112, 2498 (2000).
-
(2000)
J. Chem. Phys.
, vol.112
, pp. 2498
-
-
Staufer, M.1
Birkenheuer, U.2
Belling, T.3
Nörtemann, F.4
Rösch, N.5
Widdra, W.6
Kostov, K.L.7
Moritz, T.8
Menzel, D.9
-
13
-
-
0035092853
-
-
10.1103/PhysRevB.63.085314
-
W. A. Hofer, A. J. Fisher, G. P. Lopinski, and R. A. Wolkow, Phys. Rev. B 10.1103/PhysRevB.63.085314 63, 085314 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 085314
-
-
Hofer, W.A.1
Fisher, A.J.2
Lopinski, G.P.3
Wolkow, R.A.4
-
14
-
-
0344445448
-
-
10.1103/PhysRevB.68.115408
-
N. Witkowski, F. Hennies, A. Pietzsch, S. Mattsson, A. Föhlisch, W. Wurth, M. Nagasono, and M. N. Piancastelli, Phys. Rev. B 10.1103/PhysRevB.68. 115408 68, 115408 (2003).
-
(2003)
Phys. Rev. B
, vol.68
, pp. 115408
-
-
Witkowski, N.1
Hennies, F.2
Pietzsch, A.3
Mattsson, S.4
Föhlisch, A.5
Wurth, W.6
Nagasono, M.7
Piancastelli, M.N.8
-
17
-
-
29744469165
-
-
10.1103/PhysRevB.72.235317
-
J.-Y. Lee and J.-H. Cho, Phys. Rev. B 10.1103/PhysRevB.72.235317 72, 235317 (2005).
-
(2005)
Phys. Rev. B
, vol.72
, pp. 235317
-
-
Lee, J.-Y.1
Cho, J.-H.2
-
19
-
-
33645793689
-
-
10.1103/PhysRevB.73.155413
-
M. Preuss and F. Bechstedt, Phys. Rev. B 10.1103/PhysRevB.73.155413 73, 155413 (2006).
-
(2006)
Phys. Rev. B
, vol.73
, pp. 155413
-
-
Preuss, M.1
Bechstedt, F.2
-
20
-
-
34547677691
-
-
10.1103/PhysRevB.76.085402
-
K. Johnston and R. M. Nieminen, Phys. Rev. B 10.1103/PhysRevB.76.085402 76, 085402 (2007).
-
(2007)
Phys. Rev. B
, vol.76
, pp. 085402
-
-
Johnston, K.1
Nieminen, R.M.2
-
22
-
-
41549119876
-
-
10.1103/PhysRevB.77.121404
-
K. Johnston, J. Kleis, B. I. Lundqvist, and R. M. Nieminen, Phys. Rev. B 10.1103/PhysRevB.77.121404 77, 121404 (R) (2008).
-
(2008)
Phys. Rev. B
, vol.77
, pp. 121404
-
-
Johnston, K.1
Kleis, J.2
Lundqvist, B.I.3
Nieminen, R.M.4
-
26
-
-
10644250257
-
-
10.1103/PhysRev.136.B864
-
P. Hohenberg and W. Kohn, Phys. Rev. 10.1103/PhysRev.136.B864 136, B864 (1964).
-
(1964)
Phys. Rev.
, vol.136
, pp. 864
-
-
Hohenberg, P.1
Kohn, W.2
-
27
-
-
0042113153
-
-
10.1103/PhysRev.140.A1133
-
W. Kohn and L. J. Sham, Phys. Rev. 10.1103/PhysRev.140.A1133 140, A1133 (1965).
-
(1965)
Phys. Rev.
, vol.140
, pp. 1133
-
-
Kohn, W.1
Sham, L.J.2
-
28
-
-
33645898818
-
-
10.1103/PhysRevB.45.13244
-
J. P. Perdew and Y. Wang, Phys. Rev. B 10.1103/PhysRevB.45.13244 45, 13244 (1992).
-
(1992)
Phys. Rev. B
, vol.45
, pp. 13244
-
-
Perdew, J.P.1
Wang, Y.2
-
30
-
-
84890021933
-
-
10.1080/00268977000101561
-
S. F. Boys and F. Bernardi, Mol. Phys. 10.1080/00268977000101561 19, 553 (1970).
-
(1970)
Mol. Phys.
, vol.19
, pp. 553
-
-
Boys, S.F.1
Bernardi, F.2
-
33
-
-
0003692531
-
-
World Scientific, Singapore
-
H. Jónsson, G. Mills, and K. W. Jacobson, Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, Singapore, 1998), Chap., p. 385.
-
(1998)
Classical and Quantum Dynamics in Condensed Phase Simulations
, pp. 385
-
-
Jónsson, H.1
Mills, G.2
Jacobson, K.W.3
-
36
-
-
0012189072
-
-
10.1016/0009-2614(95)00646-L
-
R. Lindh, A. Bernhardsson, G. Karlström, and P.-Å. Malmqvist, Chem. Phys. Lett. 10.1016/0009-2614(95)00646-L 241, 423 (1995).
-
(1995)
Chem. Phys. Lett.
, vol.241
, pp. 423
-
-
Lindh, R.1
Bernhardsson, A.2
Karlström, G.3
Malmqvist P.-A.̊4
-
37
-
-
55449106725
-
-
To assess the rate of convergence of the QSM, we have applied the method to the test systems described in Ref., i.e., several arrangements of a Pt-heptamer island on a Pt(111) surface. It turns out that the average number of necessary force calls per image until the forces are smaller than 0.01 or 0.001 eV/Å is 48 or 69, respectively. The most efficient of the algorithms compared in Ref., the global Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm without line search, is reported to need 49 or 73 iterations for the same accuracy, respectively.
-
To assess the rate of convergence of the QSM, we have applied the method to the test systems described in Ref., i.e., several arrangements of a Pt-heptamer island on a Pt(111) surface. It turns out that the average number of necessary force calls per image until the forces are smaller than 0.01 or 0.001 eV/Å is 48 or 69, respectively. The most efficient of the algorithms compared in Ref., the global Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm without line search, is reported to need 49 or 73 iterations for the same accuracy, respectively.
-
-
-
-
40
-
-
41949118958
-
-
10.1016/j.cpc.2007.11.016
-
A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 10.1016/j.cpc.2007.11.016 178, 685 (2008).
-
(2008)
Comput. Phys. Commun.
, vol.178
, pp. 685
-
-
Mostofi, A.A.1
Yates, J.R.2
Lee, Y.-S.3
Souza, I.4
Vanderbilt, D.5
Marzari, N.6
-
42
-
-
2442645503
-
-
10.1103/PhysRevB.68.165321
-
M. D'angelo, H. Enriquez, V. Yu. Aristov, P. Soukiassian, G. Renaud, A. Barbier, M. Noblet, S. Chiang, and F. Semond, Phys. Rev. B 10.1103/PhysRevB.68. 165321 68, 165321 (2003).
-
(2003)
Phys. Rev. B
, vol.68
, pp. 165321
-
-
D'Angelo, M.1
Enriquez, H.2
Yu. Aristov, V.3
Soukiassian, P.4
Renaud, G.5
Barbier, A.6
Noblet, M.7
Chiang, S.8
Semond, F.9
-
43
-
-
42749106528
-
-
10.1103/PhysRevB.70.045317
-
A. Tejeda, D. Dunham, F. J. García de Abajo, J. D. Denlinger, E. Rotenberg, E. G. Michel, and P. Soukiassian, Phys. Rev. B 10.1103/PhysRevB.70. 045317 70, 045317 (2004).
-
(2004)
Phys. Rev. B
, vol.70
, pp. 045317
-
-
Tejeda, A.1
Dunham, D.2
García De Abajo, F.J.3
Denlinger, J.D.4
Rotenberg, E.5
Michel, E.G.6
Soukiassian, P.7
-
44
-
-
55449096780
-
-
The interaction energy in the considered precursor is slightly positive (0.07 eV). This is probably due to an unphysically strong intermolecular repulsion in the basically flat benzene monolayer (in a real experiment single molecules adsorb one after another experiencing less intermolecular interaction), for one reason, and also related to the fact that the very small interaction energy is near the accuracy level of the counterpoise correction. The real interaction can be expected to be slightly attractive indeed. In either case, the energy barrier can be surmounted by a considerable fraction of the impinging benzene molecules.
-
The interaction energy in the considered precursor is slightly positive (0.07 eV). This is probably due to an unphysically strong intermolecular repulsion in the basically flat benzene monolayer (in a real experiment single molecules adsorb one after another experiencing less intermolecular interaction), for one reason, and also related to the fact that the very small interaction energy is near the accuracy level of the counterpoise correction. The real interaction can be expected to be slightly attractive indeed. In either case, the energy barrier can be surmounted by a considerable fraction of the impinging benzene molecules.
-
-
-
-
48
-
-
0024138827
-
-
Proceedings of the Eighth International Conference on Distributed Computing Systems (IEEE, Washington, D.C.
-
M. J. Litzkow, M. Livny, and M. W. Mutka, CONDOR-A Hunter for Idle Workstations, in Proceedings of the Eighth International Conference on Distributed Computing Systems (IEEE, Washington, D.C., 1988), pp. 104-111.
-
(1988)
CONDOR-A Hunter for Idle Workstations
, pp. 104-111
-
-
Litzkow, M.J.1
Livny, M.2
Mutka, M.W.3
|