메뉴 건너뛰기




Volumn 4146 LNBI, Issue , 2006, Pages 71-80

A new maximum-relevance criterion for significant gene selection

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; PATTERN RECOGNITION SYSTEMS; UNCERTAIN SYSTEMS;

EID: 33750047889     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11818564_9     Document Type: Conference Paper
Times cited : (1)

References (16)
  • 1
    • 0031381525 scopus 로고    scopus 로고
    • Wrapper for feature subset selection
    • R. Kohavi and G. John: Wrapper for feature subset selection. Arti.Intel. 97(1-2) (1997) 273-324
    • (1997) Arti.Intel. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 2
    • 0010739663 scopus 로고    scopus 로고
    • Filters: Wrappers and a boosting-based hybrid for feature selection
    • S. Das, Filters: Wrappers and a Boosting-Based Hybrid for Feature Selection. Proc. 18th Intl Conf. Mach. Learn. (2001) 74-81
    • (2001) Proc. 18th Intl Conf. Mach. Learn. , pp. 74-81
    • Das, S.1
  • 3
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • H. Liu and L. Yu: Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Tran, on Know. and Data engi. 17(4) (2005) 491-502
    • (2005) IEEE Tran, on Know. and Data Engi. , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 5
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • C. Ding and H. Peng: Minimum redundancy feature selection from microarray gene expression data. J. of Bioinfo. and Comp. Bio. 3(2) (2005) 185-205
    • (2005) J. of Bioinfo. and Comp. Bio. , vol.3 , Issue.2 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 6
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • L. Yu and H. Liu: Efficient Feature Selection via Analysis of Relevance and Redundancy. J. of Mach. Learn. Rese. 5 (2004) 1205-1224
    • (2004) J. of Mach. Learn. Rese. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 7
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information:Criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, and C. Ding. Feature Selection Based on Mutual Information:Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Trans. on Patt. anal, and mach, intel. 27(8) (2005) 1226-1238
    • (2005) IEEE Trans. on Patt. Anal, and Mach, Intel. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 9
    • 85053374465 scopus 로고    scopus 로고
    • Making use of the most expressive jumping emerging patterns for classification
    • J. Li, G. Dong and K. Ramamohanarao: Making Use of the Most Expressive Jumping Emerging Patterns for Classification. Know, and Info. Sys. 3(2) (2001) 131-145
    • (2001) Know, and Info. Sys. , vol.3 , Issue.2 , pp. 131-145
    • Li, J.1    Dong, G.2    Ramamohanarao, K.3
  • 10
    • 0036083435 scopus 로고    scopus 로고
    • Identifying good diagnostic genes or genes groups from gene expression data by using the concept of emerging patterns
    • J. Li and L. Wong: Identifying good diagnostic genes or genes groups from gene expression data by using the concept of emerging patterns. Bioinformatics. 18 (2002) 725-734, 1407-1408
    • (2002) Bioinformatics , vol.18 , pp. 725-734
    • Li, J.1    Wong, L.2
  • 11
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • U. Fayyad and K. Irani: Multi-interval discretization of continuous-valued attributes for classification learning. Proc. of the 13th Inter. J. Conf. on Arti. Intel. (1993) 1022-1029
    • (1993) Proc. of the 13th Inter. J. Conf. on Arti. Intel. , pp. 1022-1029
    • Fayyad, U.1    Irani, K.2
  • 12
    • 0036522403 scopus 로고    scopus 로고
    • Unsupervised feature selection using feature similarity
    • P. Mitra, Murthy, and S.K. Pal: Unsupervised Feature Selection Using Feature Similarity. IEEE Tran, of Patt. anal, and mach, intel. 24(2) (2002) 301-312
    • (2002) IEEE Tran, of Patt. Anal, and Mach, Intel. , vol.24 , Issue.2 , pp. 301-312
    • Murthy, P.M.1    Pal, S.K.2
  • 13
    • 33750089162 scopus 로고    scopus 로고
    • Redundancy based feature selection for microarray data
    • L. Yu and H. Liu: Redundancy Based Feature Selection for Microarray Data. KDD'04. (2004) 22-25
    • (2004) KDD'04 , pp. 22-25
    • Yu, L.1    Liu, H.2
  • 14
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • C.W. Hsu, C.J. Lin: A comparison of methods for multi-class support vector machines. IEEE Trans. of Neural Networks. 13 (2002) 415-425
    • (2002) IEEE Trans. of Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 15
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon, N. Barkai, D. Notterman et al: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. of the Nat. Acad. of Sciences. 96(10) (1999) 6745-6750
    • (1999) Proc. of the Nat. Acad. of Sciences , vol.96 , Issue.10 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3
  • 16
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T.R. Golub, D.K. Slonim et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 286 (1999) 531-537
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.