메뉴 건너뛰기




Volumn , Issue , 2007, Pages 141-150

Structured prediction models via the Matrix-Tree Theorem

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMIC FRAMEWORK; DEPENDENCY PARSER; DEPENDENCY STRUCTURES; KIRCHHOFF; MARGINALS; MATRIX-TREE THEOREM; PARTITION FUNCTIONS; SPANNING TREE; STATISTICAL MODELS; STRUCTURED PREDICTION; TRAINING METHODS;

EID: 80053344876     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (146)

References (38)
  • 2
    • 31844436350 scopus 로고    scopus 로고
    • Exponentiated gradient algorithms for large-margin structured classification
    • P. Bartlett, M. Collins, B. Taskar, and D. McAllester. 2004. Exponentiated gradient algorithms for large-margin structured classification. In NIPS.
    • (2004) NIPS
    • Bartlett, P.1    Collins, M.2    Taskar, B.3    McAllester, D.4
  • 3
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains
    • L.E. Baum, T. Petrie, G. Soules, and N. Weiss. 1970. A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. Annals of Mathematical Statistics, 41:164-171.
    • (1970) Annals of Mathematical Statistics , vol.41 , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 4
    • 85086490822 scopus 로고    scopus 로고
    • CoNLL-X shared task on multilingual dependency parsing
    • S. Buchholz and E. Marsi. 2006. CoNLL-X shared task on multilingual dependency parsing. In Proc. CoNLL-X.
    • (2006) Proc. CoNLL-X.
    • Buchholz, S.1    Marsi, E.2
  • 5
    • 80053358560 scopus 로고    scopus 로고
    • Experiments with a higher-order projective dependency parser
    • X. Carreras. 2007. Experiments with a higher-order projective dependency parser. In Proc. EMNLP-CoNLL.
    • (2007) Proc. EMNLP-CoNLL
    • Carreras, X.1
  • 6
    • 0024606422 scopus 로고
    • On the spanning tree polyhedron
    • S. Chopra. 1989. On the spanning tree polyhedron. Oper. Res. Lett., pages 25-29.
    • (1989) Oper. Res. Lett. , pp. 25-29
    • Chopra, S.1
  • 7
    • 0000666661 scopus 로고
    • On the shortest arborescence of a directed graph
    • Y.J. Chu and T.H. Liu. 1965. On the shortest arborescence of a directed graph. Science Sinica, 14:1396-1400.
    • (1965) Science Sinica , vol.14 , pp. 1396-1400
    • Chu, Y.J.1    Liu, T.H.2
  • 9
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms
    • M. Collins. 2002. Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In Proc. EMNLP.
    • (2002) Proc. EMNLP
    • Collins, M.1
  • 12
    • 4043070633 scopus 로고    scopus 로고
    • Three new probabilistic models for dependency parsing: An exploration
    • J. Eisner. 1996. Three new probabilistic models for dependency parsing: An exploration. In Proc. COLING.
    • (1996) Proc. COLING
    • Eisner, J.1
  • 13
    • 78650261045 scopus 로고    scopus 로고
    • Exponentiated gradient algorithms for log-linear structured prediction
    • A. Globerson, T. Koo, X. Carreras, and M. Collins. 2007. Exponentiated gradient algorithms for log-linear structured prediction. In Proc. ICML.
    • (2007) Proc. ICML
    • Globerson, A.1    Koo, T.2    Carreras, X.3    Collins, M.4
  • 16
    • 0013363096 scopus 로고    scopus 로고
    • Joint and conditional estimation of tagging and parsing models
    • M. Johnson. 2001. Joint and conditional estimation of tagging and parsing models. In Proc. ACL.
    • (2001) Proc. ACL
    • Johnson, M.1
  • 18
    • 0142192295 scopus 로고    scopus 로고
    • Conditonal random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditonal random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. ICML.
    • (2001) Proc. ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 19
    • 84876798255 scopus 로고    scopus 로고
    • Online learning of approximate dependency parsing algorithms
    • R. McDonald and F. Pereira. 2006. Online learning of approximate dependency parsing algorithms. In Proc. EACL.
    • (2006) Proc. EACL
    • Mcdonald, R.1    Pereira, F.2
  • 20
    • 85119623914 scopus 로고    scopus 로고
    • On the complexity of nonprojective data-driven dependency parsing
    • R. McDonald and G. Satta. 2007. On the complexity of nonprojective data-driven dependency parsing. In Proc. IWPT.
    • (2007) Proc. IWPT
    • Mcdonald, R.1    Satta, G.2
  • 21
    • 84859925125 scopus 로고    scopus 로고
    • Online large-margin training of dependency parsers
    • R. McDonald, K. Crammer, and F. Pereira. 2005a. Online large-margin training of dependency parsers. In Proc. ACL.
    • (2005) Proc. ACL
    • Mcdonald, R.1    Crammer, K.2    Pereira, F.3
  • 22
  • 23
    • 80053353917 scopus 로고    scopus 로고
    • Multilingual dependency parsing with a two-stage discriminative parser
    • R. McDonald, K. Lerman, and F. Pereira. 2006. Multilingual dependency parsing with a two-stage discriminative parser. In Proc. CoNLL-X.
    • (2006) Proc. CoNLL-X
    • Mcdonald, R.1    Lerman, K.2    Pereira, F.3
  • 29
    • 85043116988 scopus 로고    scopus 로고
    • Shallow parsing with conditional random fields
    • F. Sha and F. Pereira. 2003. Shallow parsing with conditional random fields. In Proc. HLT-NAACL.
    • (2003) Proc. HLT-NAACL
    • Sha, F.1    Pereira, F.2
  • 30
    • 84859905260 scopus 로고    scopus 로고
    • Contrastive estimation: Training log-linear models on unlabeled data
    • N.A. Smith and J. Eisner. 2005. Contrastive estimation: Training log-linear models on unlabeled data. In Proc. ACL.
    • (2005) Proc. ACL
    • Smith, N.A.1    Eisner, J.2
  • 31
    • 80053381429 scopus 로고    scopus 로고
    • Probabilistic models of nonprojective dependency trees
    • D.A. Smith and N.A. Smith. 2007. Probabilistic models of nonprojective dependency trees. In Proc. EMNLP-CoNLL.
    • (2007) Proc. EMNLP-CoNLL
    • Smith, D.A.1    Smith, N.A.2
  • 34
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. 2004. Support vector machine learning for interdependent and structured output spaces. In Proc. ICML.
    • (2004) Proc. ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 37
    • 34447644761 scopus 로고    scopus 로고
    • Machine learningbased dependency analyzer for chinese
    • Y. Matsumoto Y. Cheng, M. Asahara. 2005. Machine learningbased dependency analyzer for chinese. In Proc. ICCC.
    • (2005) Proc. ICCC
    • Cheng, Y.M.Y.1    Asahara, M.2
  • 38
    • 26044449174 scopus 로고    scopus 로고
    • Statistical dependency analysis with support vector machines
    • H. Yamada and Y. Matsumoto. 2003. Statistical dependency analysis with support vector machines. In Proc. IWPT.
    • (2003) Proc. IWPT
    • Yamada, H.1    Matsumoto, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.