메뉴 건너뛰기




Volumn 3120, Issue , 2004, Pages 502-517

Boosting based on a smooth margin

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); DATA ACQUISITION; THEOREM PROVING; VECTORS; ADAPTIVE BOOSTING; APPROXIMATION ALGORITHMS;

EID: 9444251806     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-27819-1_35     Document Type: Conference Paper
Times cited : (18)

References (15)
  • 1
    • 0004198448 scopus 로고    scopus 로고
    • Arcing the edge
    • Statistics Department, University of California at Berkeley
    • Leo Breiman. Arcing the edge. Technical Report 486, Statistics Department, University of California at Berkeley, 1997.
    • (1997) Technical Report , vol.486
    • Breiman, L.1
  • 2
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Leo Breiman. Prediction games and arcing algorithms. Neural Computation, 11(7):1493-1517, 1999.
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 3
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression, AdaBoost and Bregman distances
    • Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, AdaBoost and Bregman distances. Machine Learning, 48(1/2/3), 2002.
    • (2002) Machine Learning , vol.48 , Issue.1-3
    • Collins, M.1    Schapire, R.E.2    Singer, Y.3
  • 4
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • August
    • Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, August 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 6
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • February
    • V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. The Annals of Statistics, 30(1), February 2002.
    • (2002) The Annals of Statistics , vol.30 , Issue.1
    • Koltchinskii, V.1    Panchenko, D.2
  • 8
    • 1542276975 scopus 로고    scopus 로고
    • An introduction to boosting and leveraging
    • S. Mendelson and A. Smola, editors, Springer
    • R. Meir and G. Rätsch. An introduction to boosting and leveraging. In S. Mendelson and A. Smola, editors, Advanced Lectures on Machine Learning, pages 119-184. Springer, 2003.
    • (2003) Advanced Lectures on Machine Learning , pp. 119-184
    • Meir, R.1    Rätsch, G.2
  • 10
    • 1542367497 scopus 로고    scopus 로고
    • Boosting as a regularized path to a maximum margin classifier
    • Department of Statistics, Stanford University
    • Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to a maximum margin classifier. Technical report, Department of Statistics, Stanford University, 2003.
    • (2003) Technical Report
    • Rosset, S.1    Zhu, J.2    Hastie, T.3
  • 14
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • October
    • [14] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686, October 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 15
    • 1542307688 scopus 로고    scopus 로고
    • Boosting with early stopping: Convergence and consistency
    • Department of Statistics, UC Berkeley
    • Tong Zhang and Bin Yu. Boosting with early stopping: convergence and consistency. Technical Report 635, Department of Statistics, UC Berkeley, 2003.
    • (2003) Technical Report , vol.635
    • Zhang, T.1    Bin, Yu.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.