메뉴 건너뛰기




Volumn 29, Issue 14, 2008, Pages 1954-1959

Better multiclass classification via a margin-optimized single binary problem

Author keywords

Multiclass classification; Multiple kernel learning; Support vector machines

Indexed keywords

CLASSIFIERS; LEARNING SYSTEMS; PROGRAMMING THEORY;

EID: 50149098403     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2008.06.012     Document Type: Article
Times cited : (10)

References (26)
  • 1
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • Allwein E.L., Schapire R.E., and Singer Y. Reducing multiclass to binary: A unifying approach for margin classifiers. JMLR 1 (2000) 113-141
    • (2000) JMLR , vol.1 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 2
    • 10944256662 scopus 로고    scopus 로고
    • Anguita, D., Ridella, S., Sterpi, D., 2004. A new method for multiclass support vector machines. In: Proceedings on the International Joint Conference on Neural Networks, pp. 407-412.
    • Anguita, D., Ridella, S., Sterpi, D., 2004. A new method for multiclass support vector machines. In: Proceedings on the International Joint Conference on Neural Networks, pp. 407-412.
  • 3
    • 25444522689 scopus 로고    scopus 로고
    • Fast kernel classifiers with online and active learning
    • Bordes A., Ertekin S., Weston J., and Bottou L. Fast kernel classifiers with online and active learning. JMLR 6 (2005) 1579-1619
    • (2005) JMLR , vol.6 , pp. 1579-1619
    • Bordes, A.1    Ertekin, S.2    Weston, J.3    Bottou, L.4
  • 4
    • 84899006163 scopus 로고    scopus 로고
    • Bousquet, O., Herrmann, D., 2003. On the complexity of learning the kernel matrix. In: NIPS.
    • Bousquet, O., Herrmann, D., 2003. On the complexity of learning the kernel matrix. In: NIPS.
  • 5
    • 32544437023 scopus 로고    scopus 로고
    • Kernel methods and the exponential family
    • Canu S., and Smola A. Kernel methods and the exponential family. Neurocomputing 69 (2006) 714-720
    • (2006) Neurocomputing , vol.69 , pp. 714-720
    • Canu, S.1    Smola, A.2
  • 6
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: Support vector machines for large-scale regression problems
    • Collobert R., and Bengio S. SVMTorch: Support vector machines for large-scale regression problems. JMLR 1 (2001) 143-160
    • (2001) JMLR , vol.1 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 7
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. JMLR 7 (2006) 1-30
    • (2006) JMLR , vol.7 , pp. 1-30
    • Demšar, J.1
  • 8
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich T.G., and Bakiri G. Solving multiclass learning problems via error-correcting output codes. JAIR 2 (1995) 263-286
    • (1995) JAIR , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 11
    • 50149116247 scopus 로고    scopus 로고
    • Friedman, J.H., 1996. Another approach to polychotomous classification. Technical Report, Stanford University.
    • Friedman, J.H., 1996. Another approach to polychotomous classification. Technical Report, Stanford University.
  • 12
    • 84898960512 scopus 로고    scopus 로고
    • Har-Peled, S., Roth, D., Zimak, D., 2003. Constraint classification for multiclass classification and ranking. In: NIPS.
    • Har-Peled, S., Roth, D., Zimak, D., 2003. Constraint classification for multiclass classification and ranking. In: NIPS.
  • 13
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu C.W., and Lin C.J. A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Networks 13 (2002) 415-425
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 14
    • 33745789043 scopus 로고    scopus 로고
    • Building support vector machines with reduced classifier complexity
    • Keerthi S., Chapelle O., and DeCoste D. Building support vector machines with reduced classifier complexity. JMLR 6 (2006) 1493-1515
    • (2006) JMLR , vol.6 , pp. 1493-1515
    • Keerthi, S.1    Chapelle, O.2    DeCoste, D.3
  • 16
    • 2142775432 scopus 로고    scopus 로고
    • Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data
    • Lee Y., Lin Y., and Wahba G. Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data. J. Amer. Statist. Assoc. 99 (2004) 67-81
    • (2004) J. Amer. Statist. Assoc. , vol.99 , pp. 67-81
    • Lee, Y.1    Lin, Y.2    Wahba, G.3
  • 17
    • 50149118484 scopus 로고    scopus 로고
    • Generalization bounds and consistency for structured labeling
    • BakIr G., et al. (Ed), MIT Press
    • McAllester D. Generalization bounds and consistency for structured labeling. In: BakIr G., et al. (Ed). Predicting Structured Data (2007), MIT Press
    • (2007) Predicting Structured Data
    • McAllester, D.1
  • 18
    • 50149115871 scopus 로고    scopus 로고
    • Rifkin, R., 2002. Everything old is new again: A fresh look at historical approaches in machine learning. PhD Thesis, MIT.
    • Rifkin, R., 2002. Everything old is new again: A fresh look at historical approaches in machine learning. PhD Thesis, MIT.
  • 19
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs.-all classification
    • Rifkin R., and Klautau A. In defense of one-vs.-all classification. JMLR 5 (2004) 101-141
    • (2004) JMLR , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 20
    • 0000383868 scopus 로고
    • Parallel networks that learn to pronounce English text
    • Sejnowski T.G., and Rosenberg C.R. Parallel networks that learn to pronounce English text. J. Complex Syst. 1 1 (1987) 145-168
    • (1987) J. Complex Syst. , vol.1 , Issue.1 , pp. 145-168
    • Sejnowski, T.G.1    Rosenberg, C.R.2
  • 21
    • 33746031418 scopus 로고    scopus 로고
    • Srebro, N., Ben-David, S., 2006. Learning bounds for support vector machines with learned kernels. In: COLT, pp. 169-183.
    • Srebro, N., Ben-David, S., 2006. Learning bounds for support vector machines with learned kernels. In: COLT, pp. 169-183.
  • 22
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast svm training on very large data sets
    • Tsang I., Kwok J., and Cheung P. Core vector machines: Fast svm training on very large data sets. JMLR 5 (2005) 363-392
    • (2005) JMLR , vol.5 , pp. 363-392
    • Tsang, I.1    Kwok, J.2    Cheung, P.3
  • 23
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • Tsochantaridis I., Joachims T., Hofmann T., and Altun Y. Large margin methods for structured and interdependent output variables. JMLR 6 (2005) 1453-1484
    • (2005) JMLR , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 25
    • 26944483874 scopus 로고    scopus 로고
    • Statistical analysis of some multi-category large margin classification methods
    • Zhang T. Statistical analysis of some multi-category large margin classification methods. JMLR (2004)
    • (2004) JMLR
    • Zhang, T.1
  • 26
    • 50149120441 scopus 로고    scopus 로고
    • Zien, A., Ong, C.S., 2007. Multiclass multiple kernel learning. In: ICML.
    • Zien, A., Ong, C.S., 2007. Multiclass multiple kernel learning. In: ICML.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.