메뉴 건너뛰기




Volumn 64, Issue 3, 2006, Pages 643-651

Prediction of protein subcellular localization

Author keywords

Sequence alignment; Subcellular localization; Support vector machines

Indexed keywords

ALGORITHM; AMINO ACID SEQUENCE; ARTICLE; CELLULAR DISTRIBUTION; PREDICTION; PRIORITY JOURNAL; PROTEIN FUNCTION; PROTEIN LOCALIZATION; SEQUENCE ALIGNMENT; SEQUENCE HOMOLOGY;

EID: 33746218840     PISSN: 08873585     EISSN: 10970134     Source Type: Journal    
DOI: 10.1002/prot.21018     Document Type: Article
Times cited : (1319)

References (39)
  • 1
    • 0027105007 scopus 로고
    • A knowledge base for predicting protein localization sites in eukaryotic cells
    • Nakai K, Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 1992;14:897-911.
    • (1992) Genomics , vol.14 , pp. 897-911
    • Nakai, K.1    Kanehisa, M.2
  • 2
    • 0031588694 scopus 로고    scopus 로고
    • Relation between amino acid composition and cellular location of proteins
    • Cedano J, Aloy P, Perez-Pons JA, Querol E. Relation between amino acid composition and cellular location of proteins. J Mol Biol 1997;266:594-600.
    • (1997) J Mol Biol , vol.266 , pp. 594-600
    • Cedano, J.1    Aloy, P.2    Perez-Pons, J.A.3    Querol, E.4
  • 3
    • 0030614959 scopus 로고    scopus 로고
    • Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites
    • Nielsen H, Engelbrecht J, Brunak S, von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 1997;10:1-6.
    • (1997) Protein Eng , vol.10 , pp. 1-6
    • Nielsen, H.1    Engelbrecht, J.2    Brunak, S.3    Von Heijne, G.4
  • 4
    • 0032077533 scopus 로고    scopus 로고
    • Using neural networks for prediction of the subcellular location of proteins
    • Reinhardt A, Hubbard T. Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res 1998;26: 2230-2236.
    • (1998) Nucleic Acids Res , vol.26 , pp. 2230-2236
    • Reinhardt, A.1    Hubbard, T.2
  • 5
    • 0032940342 scopus 로고    scopus 로고
    • Protein subcellular location prediction
    • Chou KC, Elrod DW. Protein subcellular location prediction. Protein Eng 1999;12:107-118.
    • (1999) Protein Eng , vol.12 , pp. 107-118
    • Chou, K.C.1    Elrod, D.W.2
  • 6
    • 0032935861 scopus 로고    scopus 로고
    • ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites
    • Emanuelsson O, Nielsen H, von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 1999;8:978-984.
    • (1999) Protein Sci , vol.8 , pp. 978-984
    • Emanuelsson, O.1    Nielsen, H.2    Von Heijne, G.3
  • 7
    • 0034697980 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins based on their N-terminal amino acid sequence
    • Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 2000;300:1005-1016.
    • (2000) J Mol Biol , vol.300 , pp. 1005-1016
    • Emanuelsson, O.1    Nielsen, H.2    Brunak, S.3    Von Heijne, G.4
  • 8
    • 0033909566 scopus 로고    scopus 로고
    • Protein sorting signals and prediction of subcellular localization
    • Nakai K. Protein sorting signals and prediction of subcellular localization. Adv Protein Chem 2000;2000:277-344.
    • (2000) Adv Protein Chem , vol.2000 , pp. 277-344
    • Nakai, K.1
  • 9
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization prediction
    • Hua S, Sun Z. Support vector machine approach for protein subcellular localization prediction. Bioinformatics 2001;17:721-728.
    • (2001) Bioinformatics , vol.17 , pp. 721-728
    • Hua, S.1    Sun, Z.2
  • 11
    • 0344118117 scopus 로고    scopus 로고
    • Better prediction of sub-cellular localization by combining evolutionary and structural information
    • Nair R, Rost B. Better prediction of sub-cellular localization by combining evolutionary and structural information. Proteins 2003; 53:917-930.
    • (2003) Proteins , vol.53 , pp. 917-930
    • Nair, R.1    Rost, B.2
  • 12
    • 0141515750 scopus 로고    scopus 로고
    • Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs
    • Park KJ, Kanehisa M. Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics 2003;19:1656-1663.
    • (2003) Bioinformatics , vol.19 , pp. 1656-1663
    • Park, K.J.1    Kanehisa, M.2
  • 13
    • 7644239850 scopus 로고    scopus 로고
    • Using GO-PseAA predictor to predict enzyme sub-class
    • Chou KC, Cai YD. Using GO-PseAA predictor to predict enzyme sub-class. Biochem Biophys Res Commun 2004;325:506-509.
    • (2004) Biochem Biophys Res Commun , vol.325 , pp. 506-509
    • Chou, K.C.1    Cai, Y.D.2
  • 15
    • 6344283102 scopus 로고    scopus 로고
    • Predicting subcellular localization via protein motif co-occurrence
    • Scott MS, Thomas DY, Hallett MT. Predicting subcellular localization via protein motif co-occurrence. Genome Res 2004;14:1957-1966.
    • (2004) Genome Res , vol.14 , pp. 1957-1966
    • Scott, M.S.1    Thomas, D.Y.2    Hallett, M.T.3
  • 16
    • 1942505330 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions
    • Yu CS, Lin CJ, Hwang JK. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 2004;13:1402-1406.
    • (2004) Protein Sci , vol.13 , pp. 1402-1406
    • Yu, C.S.1    Lin, C.J.2    Hwang, J.K.3
  • 17
    • 19544388127 scopus 로고    scopus 로고
    • PSLpred: Prediction of subcellular localization of bacterial proteins
    • Bhasin M, Garg A, Raghava GP. PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 2005;21:2522-2524.
    • (2005) Bioinformatics , vol.21 , pp. 2522-2524
    • Bhasin, M.1    Garg, A.2    Raghava, G.P.3
  • 18
    • 15844431346 scopus 로고    scopus 로고
    • PSORTb v.2.0: Expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis
    • Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FS. PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 2005;21:617-623.
    • (2005) Bioinformatics , vol.21 , pp. 617-623
    • Gardy, J.L.1    Laird, M.R.2    Chen, F.3    Rey, S.4    Walsh, C.J.5    Ester, M.6    Brinkman, F.S.7
  • 19
    • 17644389617 scopus 로고    scopus 로고
    • Support vector machine-based method for subcellular localization of human proteins using amino acid compositions, their order, and similarity search
    • Garg A, Bhasin M, Raghava GP. Support vector machine-based method for subcellular localization of human proteins using amino acid compositions, their order, and similarity search. J Biol Chem 2005;280:14427-14432.
    • (2005) J Biol Chem , vol.280 , pp. 14427-14432
    • Garg, A.1    Bhasin, M.2    Raghava, G.P.3
  • 20
    • 0029868212 scopus 로고    scopus 로고
    • Defining a similarity threshold for a functional protein sequence pattern: The signal peptide cleavage site
    • Nielsen H, Engelbrecht J, von Heijne G, Brunak S. Defining a similarity threshold for a functional protein sequence pattern: the signal peptide cleavage site. Proteins 1996;24:165-177.
    • (1996) Proteins , vol.24 , pp. 165-177
    • Nielsen, H.1    Engelbrecht, J.2    Von Heijne, G.3    Brunak, S.4
  • 21
    • 0036891705 scopus 로고    scopus 로고
    • Sequence conserved for subcellular localization
    • Nair R, Rost B. Sequence conserved for subcellular localization. Protein Sci 2002;11:2836-2847.
    • (2002) Protein Sci , vol.11 , pp. 2836-2847
    • Nair, R.1    Rost, B.2
  • 22
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 1993;232:584-599.
    • (1993) J Mol Biol , vol.232 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 23
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999;292:195-202.
    • (1999) J Mol Biol , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 24
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
    • Hua S, Sun Z. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J Mol Biol 2001;308:397-407.
    • (2001) J Mol Biol , vol.308 , pp. 397-407
    • Hua, S.1    Sun, Z.2
  • 25
    • 0000222692 scopus 로고    scopus 로고
    • Formulations of support vector machines: A note from an optimization point of view
    • Lin C-J. Formulations of support vector machines: a note from an optimization point of view. Neural Comput 2001;13:307-317.
    • (2001) Neural Comput , vol.13 , pp. 307-317
    • Lin, C.-J.1
  • 27
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • Duan K, Keerthi SS, Poo AN. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 2003;51:41-59.
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 28
    • 0037341893 scopus 로고    scopus 로고
    • Fine-grained protein fold assignment by support vector machines using generalized npeptide coding schemes and jury voting from multiple-parameter sets
    • Yu CS, Wang JY, Yang JM, Lyu PC, Lin CJ, Hwang JK. Fine-grained protein fold assignment by support vector machines using generalized npeptide coding schemes and jury voting from multiple-parameter sets. Proteins 2003;50:531-536.
    • (2003) Proteins , vol.50 , pp. 531-536
    • Yu, C.S.1    Wang, J.Y.2    Yang, J.M.3    Lyu, P.C.4    Lin, C.J.5    Hwang, J.K.6
  • 29
    • 2542586190 scopus 로고    scopus 로고
    • Prediction of the bonding states of cysteines using the support vector machines based on multiple feature vectors and cysteine state sequences
    • Chen YC, Lin YS, Lin CJ, Hwang JK. Prediction of the bonding states of cysteines using the support vector machines based on multiple feature vectors and cysteine state sequences. Proteins 2004;55:1036-1042.
    • (2004) Proteins , vol.55 , pp. 1036-1042
    • Chen, Y.C.1    Lin, Y.S.2    Lin, C.J.3    Hwang, J.K.4
  • 30
    • 0033151954 scopus 로고    scopus 로고
    • Recognition of a protein fold in the context of the structural classification of proteins (SCOP)
    • Dubchak I, Muchnik I, Mayor C, Dralyuk I, Kim S-H. Recognition of a protein fold in the context of the structural classification of proteins (SCOP). Proteins 1999;35:401-407.
    • (1999) Proteins , vol.35 , pp. 401-407
    • Dubchak, I.1    Muchnik, I.2    Mayor, C.3    Dralyuk, I.4    Kim, S.-H.5
  • 31
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of T4 phage lysozyme
    • Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 1975;405:442-451.
    • (1975) Biochim Biophys Acta , vol.405 , pp. 442-451
    • Matthews, B.W.1
  • 32
    • 0023984847 scopus 로고
    • Optimal alignments in linear space
    • Myers EW, Miller W. Optimal alignments in linear space. Comput Appl Biosci 1988;4:11-17.
    • (1988) Comput Appl Biosci , vol.4 , pp. 11-17
    • Myers, E.W.1    Miller, W.2
  • 34
    • 27544440502 scopus 로고    scopus 로고
    • Prediction of disulfide connectivity from protein sequences
    • Chen YC, Hwang JK. Prediction of disulfide connectivity from protein sequences. Proteins 2005;61:507-512.
    • (2005) Proteins , vol.61 , pp. 507-512
    • Chen, Y.C.1    Hwang, J.K.2
  • 35
    • 29244465822 scopus 로고    scopus 로고
    • An SVM-based system for predicting protein subnuclear localizations
    • Lei Z, Dai Y. An SVM-based system for predicting protein subnuclear localizations. BMC Bioinformatics 2005;6:291.
    • (2005) BMC Bioinformatics , vol.6 , pp. 291
    • Lei, Z.1    Dai, Y.2
  • 36
    • 0036308741 scopus 로고    scopus 로고
    • Enzyme function less conserved than anticipated
    • Rost B. Enzyme function less conserved than anticipated. J Mol Biol 2002;318:595-608.
    • (2002) J Mol Biol , vol.318 , pp. 595-608
    • Rost, B.1
  • 37
    • 0035910270 scopus 로고    scopus 로고
    • Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
    • Krogh A, Larsson B, von Heijne G, Sonnhammer E. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001:305.
    • (2001) J Mol Biol , pp. 305
    • Krogh, A.1    Larsson, B.2    Von Heijne, G.3    Sonnhammer, E.4
  • 38
    • 0034786532 scopus 로고    scopus 로고
    • The HMMTOP transmembrane topology prediction server
    • Tusnady GE, Simon I. The HMMTOP transmembrane topology prediction server. Bioinformatics 2001;17:849-850.
    • (2001) Bioinformatics , vol.17 , pp. 849-850
    • Tusnady, G.E.1    Simon, I.2
  • 39
    • 33645054045 scopus 로고    scopus 로고
    • Prediction of buried helices in multispan alpha helical membrane proteins
    • Adamian L, Liang J. Prediction of buried helices in multispan alpha helical membrane proteins. Proteins 2006;63:1-5.
    • (2006) Proteins , vol.63 , pp. 1-5
    • Adamian, L.1    Liang, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.