-
1
-
-
0037082199
-
The Emerging Importance of Predictive ADME Simulation in Drug Discovery
-
Selick, H.E., Beresford, A.P., Tarbit, M.H.: The Emerging Importance of Predictive ADME Simulation in Drug Discovery. Drug Discov 7(2), 109-116 (2002)
-
(2002)
Drug Discov
, vol.7
, Issue.2
, pp. 109-116
-
-
Selick, H.E.1
Beresford, A.P.2
Tarbit, M.H.3
-
2
-
-
0043235835
-
Prediction of Physicochemical Properties Based on Neural Network Modeling
-
Taskinen, J., Yliruusi, J.: Prediction of Physicochemical Properties Based on Neural Network Modeling. Adv. Drug Deliver. Rev. 55(9), 1163-1183 (2003)
-
(2003)
Adv. Drug Deliver. Rev
, vol.55
, Issue.9
, pp. 1163-1183
-
-
Taskinen, J.1
Yliruusi, J.2
-
3
-
-
19644377421
-
Prediction Methods and Databases Within Chemoinformatics: Emphasis on Drugs and Drug Candidates
-
Jónsdottir, S.Ó., Jørgensen, F.S., Brunak, S.: Prediction Methods and Databases Within Chemoinformatics: Emphasis on Drugs and Drug Candidates. Bioinformatics 21, 2145-2160 (2005)
-
(2005)
Bioinformatics
, vol.21
, pp. 2145-2160
-
-
Jónsdottir, S.O.1
Jørgensen, F.S.2
Brunak, S.3
-
4
-
-
33745821727
-
Can we estimate the accuracy of ADME-Tox predictions?
-
Tetko, I.V., Bruneau, P., Mewes, H.-W., Rohrer, D.C., Poda, G.I.: Can we estimate the accuracy of ADME-Tox predictions? Drug Discov. Today 11, 700-707 (2006)
-
(2006)
Drug Discov. Today
, vol.11
, pp. 700-707
-
-
Tetko, I.V.1
Bruneau, P.2
Mewes, H.-W.3
Rohrer, D.C.4
Poda, G.I.5
-
5
-
-
0000691934
-
Neural Network Modeling for Estimation of Partition Coefficient Based on Atom-Type Electrotopological State Indices
-
Huuskonnen, J.J., Livingstone, D.J., Tetko, I.V.: Neural Network Modeling for Estimation of Partition Coefficient Based on Atom-Type Electrotopological State Indices. J. Chem. Inf. Comput. Sci. 40, 947-995 (2000)
-
(2000)
J. Chem. Inf. Comput. Sci
, vol.40
, pp. 947-995
-
-
Huuskonnen, J.J.1
Livingstone, D.J.2
Tetko, I.V.3
-
6
-
-
0034213103
-
Basic Concepts of Artificial Neural Network (ANN) Modeling and its Application in Pharmaceutical Research
-
Agatonovic-Kustrin, S., Beresford, R.J.: Basic Concepts of Artificial Neural Network (ANN) Modeling and its Application in Pharmaceutical Research. J. Pharmaceut. Biomed. 22(5), 717-727 (2000)
-
(2000)
J. Pharmaceut. Biomed
, vol.22
, Issue.5
, pp. 717-727
-
-
Agatonovic-Kustrin, S.1
Beresford, R.J.2
-
7
-
-
0001447184
-
Neural Networks Studies. 1. Comparison of Over-fitting and Overtraining
-
Tetko, I.V., Livingstone, D.J., Luik, A.I.: Neural Networks Studies. 1. Comparison of Over-fitting and Overtraining. J. Chem. Inf. Comput. Sci. 35, 826-833 (1995)
-
(1995)
J. Chem. Inf. Comput. Sci
, vol.35
, pp. 826-833
-
-
Tetko, I.V.1
Livingstone, D.J.2
Luik, A.I.3
-
8
-
-
0018709674
-
Chance Factors in Studies of Quantitative Structure-Activity Relationships
-
Topliss, J.G., Edwards, R.P.: Chance Factors in Studies of Quantitative Structure-Activity Relationships. J. Med. Chem. 22(10), 1238-1244 (1979)
-
(1979)
J. Med. Chem
, vol.22
, Issue.10
, pp. 1238-1244
-
-
Topliss, J.G.1
Edwards, R.P.2
-
9
-
-
0036139278
-
Gene selection for sample classifica-tion based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method
-
Li, L., Weinberg, C.R., Darden, T.A., Pedersen, L.G.: Gene selection for sample classifica-tion based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17(12), 1131-1142 (2002)
-
(2002)
Bioinformatics
, vol.17
, Issue.12
, pp. 1131-1142
-
-
Li, L.1
Weinberg, C.R.2
Darden, T.A.3
Pedersen, L.G.4
-
10
-
-
34548758629
-
A genetic algorithm-based method for feature subset selection
-
Tan, T., Fu, X., Zhang, Y., Bourgeois, A.G.: A genetic algorithm-based method for feature subset selection. Soft Comput 12(2), 111-120 (2008)
-
(2008)
Soft Comput
, vol.12
, Issue.2
, pp. 111-120
-
-
Tan, T.1
Fu, X.2
Zhang, Y.3
Bourgeois, A.G.4
-
11
-
-
34250896121
-
Markov blanket-embedded genetic algorithm for gene selection
-
Zhu, Z., Ong, Y., Dash, M.: Markov blanket-embedded genetic algorithm for gene selection. Pattern Recognition 40(11), 3236-3248 (2007)
-
(2007)
Pattern Recognition
, vol.40
, Issue.11
, pp. 3236-3248
-
-
Zhu, Z.1
Ong, Y.2
Dash, M.3
-
12
-
-
2942731012
-
An extensive empirical study of feature selection metrics for text classification
-
Forman, G.: An extensive empirical study of feature selection metrics for text classification. JMLR 3, 1289-1306 (2003)
-
(2003)
JMLR
, vol.3
, pp. 1289-1306
-
-
Forman, G.1
-
13
-
-
34250735169
-
Naive bayes text categorization using improved feature selection
-
Lin, K., Kang, K., Huang, Y., Zhou, C., Wang, B.: Naive bayes text categorization using improved feature selection. Journal of Computational Information Systems 3(3), 1159-1164 (2007)
-
(2007)
Journal of Computational Information Systems
, vol.3
, Issue.3
, pp. 1159-1164
-
-
Lin, K.1
Kang, K.2
Huang, Y.3
Zhou, C.4
Wang, B.5
-
14
-
-
34247561440
-
A hybrid feature selection method for text categorization
-
Montañés, E., Quevedo, J.R., Combarro, E.F., Díaz, I., Ranilla, J.: A hybrid feature selection method for text categorization. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems 15(2), 133-151 (2007)
-
(2007)
International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems
, vol.15
, Issue.2
, pp. 133-151
-
-
Montañés, E.1
Quevedo, J.R.2
Combarro, E.F.3
Díaz, I.4
Ranilla, J.5
-
16
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
Blum, A., Langley, P.: Selection of relevant features and examples in machine learning. Artificial Intelligence 97, 245-271 (1997)
-
(1997)
Artificial Intelligence
, vol.97
, pp. 245-271
-
-
Blum, A.1
Langley, P.2
-
17
-
-
33745561205
-
An Introduction to Variable and Feature Selection
-
Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. JMLR 3, 1157-1182 (2003)
-
(2003)
JMLR
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
18
-
-
34250857528
-
Ensemble Feature Selection: Consistent Descriptor Subsets for Multiple QSAR Models
-
Dutta, D., Guha, R., Wild, D., Chen, T.: Ensemble Feature Selection: Consistent Descriptor Subsets for Multiple QSAR Models. J. Chem. Inf. Model. 47, 989-997 (2007)
-
(2007)
J. Chem. Inf. Model
, vol.47
, pp. 989-997
-
-
Dutta, D.1
Guha, R.2
Wild, D.3
Chen, T.4
-
19
-
-
0038512063
-
VSMP: A novel variable selection and modeling method based on the prediction
-
Liu, S., Liu, H., Yin, C., Wang, L.: VSMP: A novel variable selection and modeling method based on the prediction. J. Chem. Inf. Comp. Sci. 43(3), 964-969 (2003)
-
(2003)
J. Chem. Inf. Comp. Sci
, vol.43
, Issue.3
, pp. 964-969
-
-
Liu, S.1
Liu, H.2
Yin, C.3
Wang, L.4
-
20
-
-
0037498037
-
Prediction of aqueous solubility and partition coefficient optimized by a genetic algorithm based descriptor selection method
-
Wegner, J.K., Zell, A.: Prediction of aqueous solubility and partition coefficient optimized by a genetic algorithm based descriptor selection method. J. Chem. Inf. Comp. Sci. 43(3), 1077-1084 (2003)
-
(2003)
J. Chem. Inf. Comp. Sci
, vol.43
, Issue.3
, pp. 1077-1084
-
-
Wegner, J.K.1
Zell, A.2
-
21
-
-
34147116834
-
Prediction of the adsorption of lonizable pesticides in soils
-
Kah, M., Brown, C.D.: Prediction of the adsorption of lonizable pesticides in soils. J. Agr. Food Chem. 55(6), 2312-2322 (2007)
-
(2007)
J. Agr. Food Chem
, vol.55
, Issue.6
, pp. 2312-2322
-
-
Kah, M.1
Brown, C.D.2
-
22
-
-
20844436302
-
Genetic algorithms and self-organizing maps: A powerful combination for modeling complex QSAR and QSPR problems
-
Bayram, E., Santago, P., Harrisb, R., Xiaob, Y., Clausetc, A.J., Schmittb, J.D.: Genetic algorithms and self-organizing maps: A powerful combination for modeling complex QSAR and QSPR problems. J. of Comput.-Aided Mol. Des. 18, 483-493 (2004)
-
(2004)
J. of Comput.-Aided Mol. Des
, vol.18
, pp. 483-493
-
-
Bayram, E.1
Santago, P.2
Harrisb, R.3
Xiaob, Y.4
Clausetc, A.J.5
Schmittb, J.D.6
-
23
-
-
0029970338
-
Evolutionary Optimization in Quantitative Structure-Activity Relationship: An Application of Genetic Neural Networks
-
So, S.-S., Karplus, M.: Evolutionary Optimization in Quantitative Structure-Activity Relationship: An Application of Genetic Neural Networks. J. Med. Chem. 39, 1521-1530 (1996)
-
(1996)
J. Med. Chem
, vol.39
, pp. 1521-1530
-
-
So, S.-S.1
Karplus, M.2
-
24
-
-
28944449555
-
Modeling of cyclin-dependent kinase inhibition by 1H-pyrazolo[3,4-d] pyrimidine derivatives using artificial neural network ensembles
-
Fernández, M., Tundidor-Camba, A., Caballero, J.: Modeling of cyclin-dependent kinase inhibition by 1H-pyrazolo[3,4-d] pyrimidine derivatives using artificial neural network ensembles. J. Chem Inf. and Model. 45(6), 1884-1895 (2005)
-
(2005)
J. Chem Inf. and Model
, vol.45
, Issue.6
, pp. 1884-1895
-
-
Fernández, M.1
Tundidor-Camba, A.2
Caballero, J.3
-
25
-
-
0002819121
-
A comparative analysis of selection schemes used in genetic algorithms
-
Morgan Kaufmann, San Mateo, CA
-
Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Foundations of Genetic Algorithms, pp. 69-93. Morgan Kaufmann, San Mateo, CA (1991)
-
(1991)
Foundations of Genetic Algorithms
, pp. 69-93
-
-
Goldberg, D.E.1
Deb, K.2
-
27
-
-
33646121277
-
GALGO: An R package for multivariate variable selection using genetic algorithms
-
Trevino, V., Falciani, F.: GALGO: An R package for multivariate variable selection using genetic algorithms. Bioinformatics 22(9), 1154-1156 (2006)
-
(2006)
Bioinformatics
, vol.22
, Issue.9
, pp. 1154-1156
-
-
Trevino, V.1
Falciani, F.2
-
28
-
-
12844284724
-
-
Technical University of Denmark, 2nd edn, April
-
Madsen, K., Nielsen, H.B., Tingleff, O.: Methods for Non-Linear Least Squares Problems. Technical University of Denmark, 2nd edn. (April, 2004)
-
(2004)
Methods for Non-Linear Least Squares Problems
-
-
Madsen, K.1
Nielsen, H.B.2
Tingleff, O.3
-
29
-
-
0036489454
-
Fuzzy ARTMAP and backpropagation neural networks based quantitative structure - property relationships (QSPRs) for octanol: Water partition coefficient of organic compounds
-
Yaffe, D., Cohen, Y., Espinosa, G., Arenas, A., Giralt, F.: Fuzzy ARTMAP and backpropagation neural networks based quantitative structure - property relationships (QSPRs) for octanol: Water partition coefficient of organic compounds. J. Chem. Inf. Comp. Sci. 42(2), 162-183 (2002)
-
(2002)
J. Chem. Inf. Comp. Sci
, vol.42
, Issue.2
, pp. 162-183
-
-
Yaffe, D.1
Cohen, Y.2
Espinosa, G.3
Arenas, A.4
Giralt, F.5
-
30
-
-
0031024171
-
Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings
-
Linpinski, C.A., Lombardo, F., Dominy, B.W., Freeny, P.: Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 23, 3-25 (1997)
-
(1997)
Adv. Drug Deliv. Rev
, vol.23
, pp. 3-25
-
-
Linpinski, C.A.1
Lombardo, F.2
Dominy, B.W.3
Freeny, P.4
-
31
-
-
0032112162
-
Towards a principled methodology for neural network design and performance evaluation in qsar; application to the prediction of logp
-
Duprat, A., Huynh, T., Dreyfus, G.: Towards a principled methodology for neural network design and performance evaluation in qsar; application to the prediction of logp. J. Chem. Inf. Comp. Sci. 38, 586-594 (1998)
-
(1998)
J. Chem. Inf. Comp. Sci
, vol.38
, pp. 586-594
-
-
Duprat, A.1
Huynh, T.2
Dreyfus, G.3
-
32
-
-
0000262640
-
A new atom-additive method for calculating partition coefficients
-
Wang, R., Fu, Y., Lai, L.: A new atom-additive method for calculating partition coefficients. J. Chem. Inf. Comp. Sci. 37(3), 615-621 (1997)
-
(1997)
J. Chem. Inf. Comp. Sci
, vol.37
, Issue.3
, pp. 615-621
-
-
Wang, R.1
Fu, Y.2
Lai, L.3
-
33
-
-
27344459398
-
Virtual computational chemistry laboratory - design and description
-
Tetko, I.V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., Palyulin, V.A., Radchenko, E.V., Zefirov, N.S., Makarenko, A.S., Tanchuk, V.Y., Prokopenko, V.V.: Virtual computational chemistry laboratory - design and description. J. Comput. Aid. Mol. Des. 19, 453-463 (2005)
-
(2005)
J. Comput. Aid. Mol. Des
, vol.19
, pp. 453-463
-
-
Tetko, I.V.1
Gasteiger, J.2
Todeschini, R.3
Mauri, A.4
Livingstone, D.5
Ertl, P.6
Palyulin, V.A.7
Radchenko, E.V.8
Zefirov, N.S.9
Makarenko, A.S.10
Tanchuk, V.Y.11
Prokopenko, V.V.12
-
34
-
-
11244335581
-
Neural networks in ADME and toxicity prediction
-
Winkler, D.A.: Neural networks in ADME and toxicity prediction. Drug. Future 29(10), 1043-1057 (2004)
-
(2004)
Drug. Future
, vol.29
, Issue.10
, pp. 1043-1057
-
-
Winkler, D.A.1
|