-
3
-
-
0032839614
-
-
Williams, N. H.; Takasaki, B.; Wall, M.; Chin, J. Acc. Chem. Res. 1999, 32, 485-493.
-
(1999)
Acc. Chem. Res
, vol.32
, pp. 485-493
-
-
Williams, N.H.1
Takasaki, B.2
Wall, M.3
Chin, J.4
-
4
-
-
0001431264
-
-
For some reviews, see
-
For some reviews, see Wilcox, D. E. Chem. Rev. 1996, 96, 2435-2458.
-
(1996)
Chem. Rev
, vol.96
, pp. 2435-2458
-
-
Wilcox, D.E.1
-
5
-
-
0029837557
-
-
(b) Sträter, N.; Lipscomb, W. N.; Klabunde, T.; Krebs, B. Angew. Chem., Int. Ed. Engl. 1996, 35, 2024-2055.
-
(1996)
Angew. Chem., Int. Ed. Engl
, vol.35
, pp. 2024-2055
-
-
Sträter, N.1
Lipscomb, W.N.2
Klabunde, T.3
Krebs, B.4
-
7
-
-
0000001528
-
-
(d) Cowan, J. A. Chem. Rev. 1998, 98, 1067-1087.
-
(1998)
Chem. Rev
, vol.98
, pp. 1067-1087
-
-
Cowan, J.A.1
-
9
-
-
0342751102
-
-
For reviews, see
-
(a) For reviews, see Chin, J. Acc. Chem. Res. 1991, 24, 145-152.
-
(1991)
Acc. Chem. Res
, vol.24
, pp. 145-152
-
-
Chin, J.1
-
10
-
-
1142267465
-
-
(b) Liu, C.; Wang, M.; Zhang, T.; Sun, H. Coord. Chem. Rev. 2004, 248, 147-168.
-
(2004)
Coord. Chem. Rev
, vol.248
, pp. 147-168
-
-
Liu, C.1
Wang, M.2
Zhang, T.3
Sun, H.4
-
13
-
-
85022895180
-
-
(b) Suh, J. Acc. Chem. Res. 1992, 25, 273-279.
-
(1992)
Acc. Chem. Res
, vol.25
, pp. 273-279
-
-
Suh, J.1
-
16
-
-
25844462886
-
-
(b) Feng, G.; Mareque-Rivas, J. C.; de Rosales, R. T. M.; Williams, N. H. J. Am. Chem. Soc. 2005, 127, 13470-13471.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 13470-13471
-
-
Feng, G.1
Mareque-Rivas, J.C.2
de Rosales, R.T.M.3
Williams, N.H.4
-
17
-
-
32244439783
-
-
(c) O'Donoghue, A. M.; Pyun, S. Y.; Yang, M.-Y.; Morrow, J. R.; Richard, J. P. J. Am. Chem. Soc. 2006, 128, 1615-1621.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 1615-1621
-
-
O'Donoghue, A.M.1
Pyun, S.Y.2
Yang, M.-Y.3
Morrow, J.R.4
Richard, J.P.5
-
18
-
-
0025073783
-
-
(a) Breslow, R.; Berger, D.; Huang, D.-L. J. Am. Chem. Soc. 1990, 112, 3686-3687.
-
(1990)
J. Am. Chem. Soc
, vol.112
, pp. 3686-3687
-
-
Breslow, R.1
Berger, D.2
Huang, D.-L.3
-
19
-
-
37049082139
-
-
(b) Morrow, J. R.; Aures, H.; Epstein, D. J. Chem. Soc., Chem. Commun. 1995, 2431-2432.
-
(1995)
J. Chem. Soc., Chem. Commun
, pp. 2431-2432
-
-
Morrow, J.R.1
Aures, H.2
Epstein, D.3
-
20
-
-
0001258264
-
-
(c) Young, M. J.; Wahnon, D.; Hynes, R. C.; Chin, J. J. Am. Chem. Soc. 1995, 117, 9441-9447.
-
(1995)
J. Am. Chem. Soc
, vol.117
, pp. 9441-9447
-
-
Young, M.J.1
Wahnon, D.2
Hynes, R.C.3
Chin, J.4
-
21
-
-
0000465810
-
-
Chu, F.; Smith, J.; Lynch, V. M.; Anslyn, E. V. Inorg. Chem. 1995, 34, 5689-5690. (the authors propose that in a Zn complex either imidazole or imidazolium might act as an auxiliary group, providing an 1.5-fold increase in RNA cleavage rate),
-
(d) Chu, F.; Smith, J.; Lynch, V. M.; Anslyn, E. V. Inorg. Chem. 1995, 34, 5689-5690. (the authors propose that in a Zn complex either imidazole or imidazolium might act as an auxiliary group, providing an 1.5-fold increase in RNA cleavage rate),
-
-
-
-
22
-
-
0344824359
-
-
See, also
-
(e) See, also: Hsu, C.-M.; Cooperman, B. S. J. Am. Chem. Soc. 1976, 98, 5657-5663.
-
(1976)
J. Am. Chem. Soc
, vol.98
, pp. 5657-5663
-
-
Hsu, C.-M.1
Cooperman, B.S.2
-
23
-
-
0030567366
-
-
(f) Koike, T.; Inoue, M.; Kimura, E.; Shiro, M. J. Am. Chem. Soc. 1996, 118, 3091-3099.
-
(1996)
J. Am. Chem. Soc
, vol.118
, pp. 3091-3099
-
-
Koike, T.1
Inoue, M.2
Kimura, E.3
Shiro, M.4
-
24
-
-
0028833682
-
-
(g) Kimura, E.; Kodama, Y.; Koike, T.; Shiro, M. J. Am. Chem. Soc. 1995, 117, 8304-8311.
-
(1995)
J. Am. Chem. Soc
, vol.117
, pp. 8304-8311
-
-
Kimura, E.1
Kodama, Y.2
Koike, T.3
Shiro, M.4
-
26
-
-
34249686935
-
-
Subat, M.; Woinaroschy, K.; Anthofer, S.; Malterer, B.; König, B. Inorg. Chem. 2007, 46, 4336-4356.
-
(2007)
Inorg. Chem
, vol.46
, pp. 4336-4356
-
-
Subat, M.1
Woinaroschy, K.2
Anthofer, S.3
Malterer, B.4
König, B.5
-
30
-
-
46749153876
-
-
The association constant of Zn2L2 with phenylphosphate in neutral aqueous solution was determined by an indicator displacement assay using pyrocatechol violet to be K = 104 L/mol. The association constant of 4-nitrophenylphosphate to Zn2L2 is expected to be even lower in the millimolar range because of the reduced basicity of this phosphate. This excludes a significant product inhibition under the experimental conditions used (less than 5% conversion; typical initial concentrations of BNPP 0.1-1 mM).
-
The association constant of Zn2L2 with phenylphosphate in neutral aqueous solution was determined by an indicator displacement assay using pyrocatechol violet to be K = 104 L/mol. The association constant of 4-nitrophenylphosphate to Zn2L2 is expected to be even lower in the millimolar range because of the reduced basicity of this phosphate. This excludes a significant product inhibition under the experimental conditions used (less than 5% conversion; typical initial concentrations of BNPP 0.1-1 mM).
-
-
-
-
31
-
-
46749153043
-
-
4: Fabrizzi, L.; Micheloni, M.; Paoletti, P. Inorg. Chem. 1980, 19, 535-538.
-
4: Fabrizzi, L.; Micheloni, M.; Paoletti, P. Inorg. Chem. 1980, 19, 535-538.
-
-
-
-
33
-
-
33751553249
-
-
(c) Bencini, A.; Bianchi, A.; Garcia-Espana, E.; Jeannin, Y.; Julve, M.; Marcelino, V.; Philoche-Levisalles, M. Inorg. Chem. 1990, 29, 963-970.
-
(1990)
Inorg. Chem
, vol.29
, pp. 963-970
-
-
Bencini, A.1
Bianchi, A.2
Garcia-Espana, E.3
Jeannin, Y.4
Julve, M.5
Marcelino, V.6
Philoche-Levisalles, M.7
-
34
-
-
0002962891
-
-
The comparison of UV and IR spectra with literature values indicate a square pyramidal complex with one molecule of water as the fifth ligand: Styka, M. C, Smierciak, R. C, Blinn, E. L, DeSimone, R. E, Passariello, J. V. Inorg. Chem. 1978, 17, 82-86
-
(a) The comparison of UV and IR spectra with literature values indicate a square pyramidal complex with one molecule of water as the fifth ligand: Styka, M. C.; Smierciak, R. C.; Blinn, E. L.; DeSimone, R. E.; Passariello, J. V. Inorg. Chem. 1978, 17, 82-86.
-
-
-
-
35
-
-
0000463394
-
-
(b) Thöm, V. J.; Hosken, G. D.; Hancock, R. D. Inorg. Chem. 1985, 24, 3378-3381.
-
(1985)
Inorg. Chem
, vol.24
, pp. 3378-3381
-
-
Thöm, V.J.1
Hosken, G.D.2
Hancock, R.D.3
-
36
-
-
0001065895
-
-
(c) Thöm, V. J.; Fox, C. C.; Boeyens, J. C. A.; Hancock, R. D. J. Am. Chem. Soc. 1984, 106, 5947-5955.
-
(1984)
J. Am. Chem. Soc
, vol.106
, pp. 5947-5955
-
-
Thöm, V.J.1
Fox, C.C.2
Boeyens, J.C.A.3
Hancock, R.D.4
-
39
-
-
0001458190
-
-
Norman, P. R.; Tate, A.; Rich, P. Inorg. Chim. Acta 1988, 145, 211-217.
-
(1988)
Inorg. Chim. Acta
, vol.145
, pp. 211-217
-
-
Norman, P.R.1
Tate, A.2
Rich, P.3
-
41
-
-
0001562075
-
-
(b) Hegg, E. L.; Mortimore, S. H.; Cheung, C. L.; Huyett, J. E.; Powell, D. R.; Burstyn, J. N. Inorg. Chem. 1999, 38, 2961-2968.
-
(1999)
Inorg. Chem
, vol.38
, pp. 2961-2968
-
-
Hegg, E.L.1
Mortimore, S.H.2
Cheung, C.L.3
Huyett, J.E.4
Powell, D.R.5
Burstyn, J.N.6
-
42
-
-
13844271875
-
-
and reference therein
-
(a) Fry, F. H.; Fischmann, A. J.; Belousoff, M. J.; Spiccia, L.; Brügger, J. Inorg. Chem. 2005, 44, 941-950; and reference therein.
-
(2005)
Inorg. Chem
, vol.44
, pp. 941-950
-
-
Fry, F.H.1
Fischmann, A.J.2
Belousoff, M.J.3
Spiccia, L.4
Brügger, J.5
-
43
-
-
33646416765
-
-
(b) Belousoff, M. J.; Duriska, M. B.; Graham, B.; Batten, S. R.; Moubaraki, B.; Murray, K. S.; Spiccia, L. Inorg. Chem. 2006, 45, 3746-3755.
-
(2006)
Inorg. Chem
, vol.45
, pp. 3746-3755
-
-
Belousoff, M.J.1
Duriska, M.B.2
Graham, B.3
Batten, S.R.4
Moubaraki, B.5
Murray, K.S.6
Spiccia, L.7
-
44
-
-
0037433977
-
-
(c) Bonora, G. M.; Drioli, S.; Felluga, F.; Mancin, F.; Rossi, P.; Scrimin, P.; Tecilla, P. Tetrahedron Lett. 2003, 44, 535-538.
-
(2003)
Tetrahedron Lett
, vol.44
, pp. 535-538
-
-
Bonora, G.M.1
Drioli, S.2
Felluga, F.3
Mancin, F.4
Rossi, P.5
Scrimin, P.6
Tecilla, P.7
-
47
-
-
46749112684
-
-
The reactivity increases from pH 7 to pH 9 because of increasing amounts of the active species in solution (0.007% at pH 7, 0.07% at pH 8, and 0.7% at pH 9, Previously reported azamacrocyclic Ni(II) complexes (see ref 22) were also active only at pH > 9
-
The reactivity increases from pH 7 to pH 9 because of increasing amounts of the active species in solution (0.007% at pH 7, 0.07% at pH 8, and 0.7% at pH 9). Previously reported azamacrocyclic Ni(II) complexes (see ref 22) were also active only at pH > 9.
-
-
-
-
48
-
-
0029860773
-
-
Kimura, E.; Hashimoto, H.; Koike, T. J. Am. Chem. Soc. 1996, 118, 10963-10970.
-
(1996)
J. Am. Chem. Soc
, vol.118
, pp. 10963-10970
-
-
Kimura, E.1
Hashimoto, H.2
Koike, T.3
-
49
-
-
0001439339
-
-
(a) Gellman, S. H.; Petter, R.; Breslow, R. J. Am. Chem. Soc. 1986, 108, 2388-2394.
-
(1986)
J. Am. Chem. Soc
, vol.108
, pp. 2388-2394
-
-
Gellman, S.H.1
Petter, R.2
Breslow, R.3
-
50
-
-
0037945185
-
-
(b) Bonfa, L.; Gatos, M.; Mancin, F.; Tecilla, P.; Tonellato, U. Inorg. Chem. 2003, 42, 3943-3949.
-
(2003)
Inorg. Chem
, vol.42
, pp. 3943-3949
-
-
Bonfa, L.1
Gatos, M.2
Mancin, F.3
Tecilla, P.4
Tonellato, U.5
-
51
-
-
46749087927
-
-
As shown by previous reports, the mechanism of BNPP hydrolysis by macrocyclic metal complexes implies the following steps: deprotonation of a metal bound water molecule (Ka, binding of the substrate to the metal complex (K, intracomplex nucleophilic attack of the hydroxide (k′) with simultaneous departure of the leaving group and, eventually, deprotonation and decomplexation of the substrate to restore the catalyst. The reaction rate is pH dependent and saturation behavior by formation of the substrate-catalyst complex is expected. However, the affinities of phosphate diesters to Zn(II) complexes are very low and the curvature of the plot is not detectable in the exploitable concentration range. This is common to all reports on metal complexes hydrolyzing phosphate diesters
-
a), binding of the substrate to the metal complex (K), intracomplex nucleophilic attack of the hydroxide (k′) with simultaneous departure of the leaving group and, eventually, deprotonation and decomplexation of the substrate to restore the catalyst. The reaction rate is pH dependent and saturation behavior by formation of the substrate-catalyst complex is expected. However, the affinities of phosphate diesters to Zn(II) complexes are very low and the curvature of the plot is not detectable in the exploitable concentration range. This is common to all reports on metal complexes hydrolyzing phosphate diesters.
-
-
-
-
52
-
-
4544378013
-
-
(a) Costas, M.; Anda, C.; Llobet, A.; Parella, T.; Evans, H. S.; Pinilla, E. Eur. J. Inorg. Chem. 2004, 857-865.
-
(2004)
Eur. J. Inorg. Chem
, pp. 857-865
-
-
Costas, M.1
Anda, C.2
Llobet, A.3
Parella, T.4
Evans, H.S.5
Pinilla, E.6
-
54
-
-
0037041611
-
-
(a) Li, S.-A.; Xia, J.; Yang, D.-X.; Xu, Y.; Li, D.-F.; Wu, M.-F.; Tang, W.-X. Inorg. Chem. 2002, 41, 1807-1815.
-
(2002)
Inorg. Chem
, vol.41
, pp. 1807-1815
-
-
Li, S.-A.1
Xia, J.2
Yang, D.-X.3
Xu, Y.4
Li, D.-F.5
Wu, M.-F.6
Tang, W.-X.7
-
55
-
-
0034742930
-
-
(b) Xia, J.; Li, S.-A.; Shi, Y.-B.; Yu, K.-B.; Tang, W.-X. J. Chem. Soc., Dalton Trans. 2001, 2109-2115.
-
(2001)
J. Chem. Soc., Dalton Trans
, pp. 2109-2115
-
-
Xia, J.1
Li, S.-A.2
Shi, Y.-B.3
Yu, K.-B.4
Tang, W.-X.5
-
56
-
-
0037293480
-
-
(c) Li, S.-A.; Li, D.-F.; Yang, D. X.; Huang, J.; Xu, Y.; Tang, W.-X. Inorg. Chem. Commun. 2003, 6, 221-224.
-
(2003)
Inorg. Chem. Commun
, vol.6
, pp. 221-224
-
-
Li, S.-A.1
Li, D.-F.2
Yang, D.X.3
Huang, J.4
Xu, Y.5
Tang, W.-X.6
-
57
-
-
0001122108
-
-
(a) Koike, T.; Gotoh, T.; Aoki, S; Kimura, E.; Shiro, M. Inorg. Chim. Acta 1998, 270, 424-432.
-
(1998)
Inorg. Chim. Acta
, vol.270
, pp. 424-432
-
-
Koike, T.1
Gotoh, T.2
Aoki, S.3
Kimura, E.4
Shiro, M.5
-
58
-
-
6044257947
-
-
(b) Aoki, S.; Kagata, D.; Shiro, M.; Takeda, K.; Kimura, E. J. Am. Chem. Soc. 2004, 126, 13377-13390.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 13377-13390
-
-
Aoki, S.1
Kagata, D.2
Shiro, M.3
Takeda, K.4
Kimura, E.5
-
59
-
-
0027236428
-
-
Shionoya, M.; Kimura, E.; Shiro, M. J. Am. Chem. Soc. 1993, 115, 6730-6737.
-
(1993)
J. Am. Chem. Soc
, vol.115
, pp. 6730-6737
-
-
Shionoya, M.1
Kimura, E.2
Shiro, M.3
-
60
-
-
0001477920
-
-
Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Fusi, V.; Giorgi, C.; Paoletti, P.; Valtancoli, B.; Zanchi, D. Inorg. Chem. 1997, 36, 2784-2790.
-
(1997)
Inorg. Chem
, vol.36
, pp. 2784-2790
-
-
Bazzicalupi, C.1
Bencini, A.2
Bianchi, A.3
Fusi, V.4
Giorgi, C.5
Paoletti, P.6
Valtancoli, B.7
Zanchi, D.8
-
61
-
-
4744371952
-
-
Bazzicalupi, C.; Bencini, A.; Berni, E.; Bianchi, A.; Fornasari, P.; Giorgi, C.; Valtancoli, B. Inorg. Chem. 2004, 43, 6255-6265.
-
(2004)
Inorg. Chem
, vol.43
, pp. 6255-6265
-
-
Bazzicalupi, C.1
Bencini, A.2
Berni, E.3
Bianchi, A.4
Fornasari, P.5
Giorgi, C.6
Valtancoli, B.7
-
62
-
-
0033576976
-
-
Kimura, E.; Gotoh, T.; Koike, T.; Shiro, M. J. Am. Chem. Soc. 1999, 121, 1267-1274.
-
(1999)
J. Am. Chem. Soc
, vol.121
, pp. 1267-1274
-
-
Kimura, E.1
Gotoh, T.2
Koike, T.3
Shiro, M.4
-
63
-
-
46749087096
-
-
The higher Lewis acidic character of the metal ion in Zn[12]aneN3 complexes leads to a stronger interaction between the metal complex and the phosphodiester, as proposed by Kimura. In the carboxylic ester hydrolysis promoted by mononuclear complexes, the simple nucleophilic mechanism is predominant and the Zn(II)-bound hydroxides act as nucleophile to the carbonyl group. Therefore, the Zn[12]aneN3 complexes with higher Lewis acidic character of the metal ion, but also lower nucleophilic character of the Zn-L-OH- species, have lower reaction rates in the hydrolysis of carboxyesters than the Zn[12]aneN4 system.
-
The higher Lewis acidic character of the metal ion in Zn[12]aneN3 complexes leads to a stronger interaction between the metal complex and the phosphodiester, as proposed by Kimura. In the carboxylic ester hydrolysis promoted by mononuclear complexes, the simple nucleophilic mechanism is predominant and the Zn(II)-bound hydroxides act as nucleophile to the carbonyl group. Therefore, the Zn[12]aneN3 complexes with higher Lewis acidic character of the metal ion, but also lower nucleophilic character of the Zn-L-OH- species, have lower reaction rates in the hydrolysis of carboxyesters than the Zn[12]aneN4 system.
-
-
-
-
64
-
-
0000474926
-
-
(a) Fujioka, H.; Koike, T.; Yamada, N.; Kimura, E. Heterocycles 1996, 42, 775-787.
-
(1996)
Heterocycles
, vol.42
, pp. 775-787
-
-
Fujioka, H.1
Koike, T.2
Yamada, N.3
Kimura, E.4
-
65
-
-
0001013083
-
-
(b) Koike, T.; Takashige, M.; Kimura, E.; Fujioka, H.; Shiro, M. Chem. - Eur. J. 1996, 2, 617-623.
-
(1996)
Chem. - Eur. J
, vol.2
, pp. 617-623
-
-
Koike, T.1
Takashige, M.2
Kimura, E.3
Fujioka, H.4
Shiro, M.5
-
66
-
-
0030954582
-
-
(c) Kimura, E.; Aoki, S.; Koike, T.; Shiro, M. J. Am. Chem. Soc. 1997, 119, 3068-3076.
-
(1997)
J. Am. Chem. Soc
, vol.119
, pp. 3068-3076
-
-
Kimura, E.1
Aoki, S.2
Koike, T.3
Shiro, M.4
-
68
-
-
0344443325
-
-
(a) Yoo, C. E.; Chae, P. S.; Kim, J. E.; Jeong, E. J.; Suh, J. J. Am. Chem. Soc. 2003, 125, 14580-14589.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 14580-14589
-
-
Yoo, C.E.1
Chae, P.S.2
Kim, J.E.3
Jeong, E.J.4
Suh, J.5
-
70
-
-
46749118436
-
-
2L2. Their low activity and the concentrations of metal complex and substrate required to reach acceptable experimental errors lead to kinetic data that do not allow a more extended analysis.
-
2L2. Their low activity and the concentrations of metal complex and substrate required to reach acceptable experimental errors lead to kinetic data that do not allow a more extended analysis.
-
-
-
-
71
-
-
0032567195
-
-
(a) Jang, B.-B.; Lee, K.-P.; Min, D.-H.; Suh, J. J. Am. Chem. Soc. 1998, 120, 12008-12016.
-
(1998)
J. Am. Chem. Soc
, vol.120
, pp. 12008-12016
-
-
Jang, B.-B.1
Lee, K.-P.2
Min, D.-H.3
Suh, J.4
-
72
-
-
0344443325
-
-
(b) Yoo, C. E.; Chae, P. S.; Kim, J. E.; Jeong, E. J.; Suh, J. J. Am. Chem. Soc. 2003, 125, 14580-14589.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 14580-14589
-
-
Yoo, C.E.1
Chae, P.S.2
Kim, J.E.3
Jeong, E.J.4
Suh, J.5
-
73
-
-
21644477307
-
-
(c) Yoo, S. H.; Lee, B. J.; Kim, H.; Suh, J. J. Am. Chem. Soc. 2005, 127, 9593-9602.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 9593-9602
-
-
Yoo, S.H.1
Lee, B.J.2
Kim, H.3
Suh, J.4
-
74
-
-
1542347640
-
-
2L2 complex have only one coordination site available each and do not act cooperatively. Iranzo, O.; Richard, J. P.; Morrow, J. P. Inorg. Chem. 2004, 43, 1743-1750.
-
2L2 complex have only one coordination site available each and do not act cooperatively. Iranzo, O.; Richard, J. P.; Morrow, J. P. Inorg. Chem. 2004, 43, 1743-1750.
-
-
-
-
75
-
-
0344586656
-
-
(b) Iranzo, O.; Elmer, T.; Richard, J. P.; Morrow, J. P. Inorg. Chem. 2003, 42, 7737-7746.
-
(2003)
Inorg. Chem
, vol.42
, pp. 7737-7746
-
-
Iranzo, O.1
Elmer, T.2
Richard, J.P.3
Morrow, J.P.4
-
76
-
-
10744224847
-
-
For previous reports of BNPP hydrolysis by di- or trinuclear Zn(II) macrocyclic complexes, see Arca, M.; Bencini, A.; Berni, E.; Caltagirone, C.; Devillanova, F. A.; Isaia, F.; Garau, A.; Giorgi, C.; Lippolis, V.; Perra, A.; Tei, L.; Valtancoli, B. Inorg. Chem. 2003, 42, 6929-6939.
-
(a) For previous reports of BNPP hydrolysis by di- or trinuclear Zn(II) macrocyclic complexes, see Arca, M.; Bencini, A.; Berni, E.; Caltagirone, C.; Devillanova, F. A.; Isaia, F.; Garau, A.; Giorgi, C.; Lippolis, V.; Perra, A.; Tei, L.; Valtancoli, B. Inorg. Chem. 2003, 42, 6929-6939.
-
-
-
-
77
-
-
0141991813
-
-
(b) Bazzicalupi, C.; Bencini, A.; Berni, E.; Giorgi, C.; Maoggi, S.; Valtancoli, B. J. Chem. Soc., Dalton Trans. 2003, 3574-3580.
-
(2003)
J. Chem. Soc., Dalton Trans
, pp. 3574-3580
-
-
Bazzicalupi, C.1
Bencini, A.2
Berni, E.3
Giorgi, C.4
Maoggi, S.5
Valtancoli, B.6
-
78
-
-
3142689722
-
-
(c) Bauer-Siebenlist, B.; Meyer, F.; Farkas, E.; Vidovic, D.; Cuesta-Seijo, J. A.; Herbst-Irmer, R.; Pritzkow, H. Inorg. Chem. 2004, 43, 4189-4202.
-
(2004)
Inorg. Chem
, vol.43
, pp. 4189-4202
-
-
Bauer-Siebenlist, B.1
Meyer, F.2
Farkas, E.3
Vidovic, D.4
Cuesta-Seijo, J.A.5
Herbst-Irmer, R.6
Pritzkow, H.7
-
79
-
-
0001287015
-
-
Bazzicalupi, C.; Bencini, A.; Berni, E.; Bianchi, A.; Giorgi, G.; Paoletti, P.; Valtancoli, B. Inorg. Chem. 1999, 38, 6323-6325.
-
(1999)
Inorg. Chem
, vol.38
, pp. 6323-6325
-
-
Bazzicalupi, C.1
Bencini, A.2
Berni, E.3
Bianchi, A.4
Giorgi, G.5
Paoletti, P.6
Valtancoli, B.7
-
80
-
-
46749123923
-
-
The hydrolytic activity of the complexes given in Table 7 were determined at 35.1°C, whereas the hydrolytic activity of the dinuclear complexes reported in this paper was determined at 25°C
-
The hydrolytic activity of the complexes given in Table 7 were determined at 35.1°C, whereas the hydrolytic activity of the dinuclear complexes reported in this paper was determined at 25°C.
-
-
-
|