메뉴 건너뛰기




Volumn 26, Issue 2, 2008, Pages 91-106

Atomic-scale modeling of self-positioning nanostructures

Author keywords

Atomic scale finite element method; Nanostructure; Self positioning

Indexed keywords

ATOMIC PHYSICS; ATOMS; CONTINUUM MECHANICS; ELASTICITY; FUNCTION EVALUATION; NANOSTRUCTURED MATERIALS; NANOSTRUCTURES; NUMERICAL ANALYSIS;

EID: 46649107706     PISSN: 15261492     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (13)

References (22)
  • 1
    • 31944437763 scopus 로고    scopus 로고
    • Arora, W. J.; Nichol, A. J.; Smith, H. I.; Barbastathis, G. (2006): Membrane folding to achieve three-dimensional nanostructures: Nanopatterned silicon nitride folded with stressed chromium hinges. Appl. Phys. Lett., 88, pp. 053108-1-3.
    • Arora, W. J.; Nichol, A. J.; Smith, H. I.; Barbastathis, G. (2006): Membrane folding to achieve three-dimensional nanostructures: Nanopatterned silicon nitride folded with stressed chromium hinges. Appl. Phys. Lett., vol. 88, pp. 053108-1-3.
  • 3
    • 33644817086 scopus 로고
    • Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films
    • Brenner, D. W. (1990): Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B, vol. 42, pp. 9458-9471.
    • (1990) Phys. Rev. B , vol.42 , pp. 9458-9471
    • Brenner, D.W.1
  • 4
    • 0037017208 scopus 로고    scopus 로고
    • A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
    • Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B. (2002): A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Condens. Matter, vol. 14, pp. 783-802.
    • (2002) J. Phys.: Condens. Matter , vol.14 , pp. 783-802
    • Brenner, D.W.1    Shenderova, O.A.2    Harrison, J.A.3    Stuart, S.J.4    Ni, B.5    Sinnott, S.B.6
  • 5
    • 41649103083 scopus 로고    scopus 로고
    • Coupled Atomistic/Continuum Simulation based on Extended Space-Time Finite Element Method
    • Chirputkar, S. U.; Qian, D. (2008): Coupled Atomistic/Continuum Simulation based on Extended Space-Time Finite Element Method. CMES: Computer Modeling in Engineering & Sciences, vol. 24, no. 3, pp. 185-202.
    • (2008) CMES: Computer Modeling in Engineering & Sciences , vol.24 , Issue.3 , pp. 185-202
    • Chirputkar, S.U.1    Qian, D.2
  • 7
    • 0035280720 scopus 로고    scopus 로고
    • Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils
    • Golod, S. V.; Prinz, V. Y.; Mashanov, V. I.; Gutakovsky, A. K. (2001): Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils. Semicond. Sci. Technol., vol. 16, pp. 181-185.
    • (2001) Semicond. Sci. Technol , vol.16 , pp. 181-185
    • Golod, S.V.1    Prinz, V.Y.2    Mashanov, V.I.3    Gutakovsky, A.K.4
  • 8
    • 0037098054 scopus 로고    scopus 로고
    • Modeling of elastic deformation of multilayers due to residual stresses and external bending
    • Hsueh, C.-H. (2002): Modeling of elastic deformation of multilayers due to residual stresses and external bending. J. Appl. Phys., vol. 91, no. 12, pp. 9652-9656.
    • (2002) J. Appl. Phys , vol.91 , Issue.12 , pp. 9652-9656
    • Hsueh, C.-H.1
  • 9
    • 33644502555 scopus 로고    scopus 로고
    • In, H. J.; Kumar, S.; Shao-Horn, Y.; Barbastathis, G. (2006): Origami fabrication of nanostructured, three-dimensional devices: Electrochemical capacitors with carbon electrodes. Appl. Phys. Lett., 88, pp. 083104-1-3.
    • In, H. J.; Kumar, S.; Shao-Horn, Y.; Barbastathis, G. (2006): Origami fabrication of nanostructured, three-dimensional devices: Electrochemical capacitors with carbon electrodes. Appl. Phys. Lett., vol. 88, pp. 083104-1-3.
  • 11
    • 33749233507 scopus 로고    scopus 로고
    • Liu, B.; Jiang, H.; Huang, Y.; Qu, S.; Yu, M.-F.; Hwang, K. C. (2005): Atomic-scale finite element method in multiscale computations with applications to carbon nanotubes. Phys. Rev. B, 72, pp. 035435-1-8.
    • Liu, B.; Jiang, H.; Huang, Y.; Qu, S.; Yu, M.-F.; Hwang, K. C. (2005): Atomic-scale finite element method in multiscale computations with applications to carbon nanotubes. Phys. Rev. B, vol. 72, pp. 035435-1-8.
  • 12
    • 0242367132 scopus 로고    scopus 로고
    • Curvature estimation for multilayer hinged structures with initial strains
    • Nikishkov, G. P. (2003): Curvature estimation for multilayer hinged structures with initial strains. J. Appl. Phys., vol. 94, no. 8, pp. 5333-5336.
    • (2003) J. Appl. Phys , vol.94 , Issue.8 , pp. 5333-5336
    • Nikishkov, G.P.1
  • 13
    • 0041492978 scopus 로고    scopus 로고
    • Finite element analysis of self-positioning microstructures and nanostructures
    • Nikishkov, G. P.; Khmyrova, I.; Ryzhii, V. (2003): Finite element analysis of self-positioning microstructures and nanostructures. Nanotechnology, vol. 14, pp. 820-823.
    • (2003) Nanotechnology , vol.14 , pp. 820-823
    • Nikishkov, G.P.1    Khmyrova, I.2    Ryzhii, V.3
  • 14
    • 31944445137 scopus 로고    scopus 로고
    • Effect of material anisotropy on the self-positioning of nanostructures
    • Nikishkov, G. P.; Nishidate, Y.; Ohnishi, T.; Vaccaro, P. O. (2006): Effect of material anisotropy on the self-positioning of nanostructures. Nanotechnology, vol. 17, pp. 1128-1133.
    • (2006) Nanotechnology , vol.17 , pp. 1128-1133
    • Nikishkov, G.P.1    Nishidate, Y.2    Ohnishi, T.3    Vaccaro, P.O.4
  • 15
    • 33845727602 scopus 로고    scopus 로고
    • Nishidate, Y.; Nikishkov, G. P. (2006): Generalized plane strain deformation of multilayer structures with initial strains. J. Appl. Phys., 100, pp. 113518-1-4.
    • Nishidate, Y.; Nikishkov, G. P. (2006): Generalized plane strain deformation of multilayer structures with initial strains. J. Appl. Phys., vol. 100, pp. 113518-1-4.
  • 16
    • 35648985108 scopus 로고    scopus 로고
    • Nishidate, Y.; Nikishkov, G. P. (2007): Effect of thickness on the self-positioning of nanostructures. J. Appl. Phys., 102, pp. 083501-1-5.
    • Nishidate, Y.; Nikishkov, G. P. (2007): Effect of thickness on the self-positioning of nanostructures. J. Appl. Phys., vol. 102, pp. 083501-1-5.
  • 17
    • 0002360821 scopus 로고    scopus 로고
    • Strain-induced Kirkendall mixing at semiconductor interfaces
    • Nordlund, K.; Nord, J.; Frantz, J.; Keinonen, J. (2000): Strain-induced Kirkendall mixing at semiconductor interfaces. Comput. Mater. Sci., vol. 18, pp. 283-294.
    • (2000) Comput. Mater. Sci , vol.18 , pp. 283-294
    • Nordlund, K.1    Nord, J.2    Frantz, J.3    Keinonen, J.4
  • 18
    • 0035826219 scopus 로고    scopus 로고
    • Nanotechnology: Thin solid films roll up into nanotubes
    • Schmidt, O. G.; Eberl, K. (2001): Nanotechnology: Thin solid films roll up into nanotubes. Nature, vol. 410, pp. 168.
    • (2001) Nature , vol.410 , pp. 168
    • Schmidt, O.G.1    Eberl, K.2
  • 19
    • 33751564660 scopus 로고    scopus 로고
    • Songmuang, R.; Deneke, C.; Schmidt, O. G. (2006): Rolled-up micro- and nanotubes from single-material thin films. Appl. Phys. Lett., 89, pp. 223109-1-3.
    • Songmuang, R.; Deneke, C.; Schmidt, O. G. (2006): Rolled-up micro- and nanotubes from single-material thin films. Appl. Phys. Lett., vol. 89, pp. 223109-1-3.
  • 20
    • 27744577658 scopus 로고
    • Modeling solid-state chemistry: Interatomic potentials for multicomponent systems
    • Tersoff, J. (1989): Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B, vol. 39, pp. 5566-5568.
    • (1989) Phys. Rev. B , vol.39 , pp. 5566-5568
    • Tersoff, J.1
  • 22
    • 0035821114 scopus 로고    scopus 로고
    • Strain-driven self-positioning of micromachined structures
    • Vaccaro, P. O.; Kubota, K.; Aida, T. (2001): Strain-driven self-positioning of micromachined structures. Appl. Phys. Lett., vol. 78, no. 19, pp 2852-2854.
    • (2001) Appl. Phys. Lett , vol.78 , Issue.19 , pp. 2852-2854
    • Vaccaro, P.O.1    Kubota, K.2    Aida, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.