메뉴 건너뛰기




Volumn 19, Issue 11, 1998, Pages 997-1006

Unsupervised feature selection using a neuro-fuzzy approach

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; FEATURE EXTRACTION; FUZZY SETS; NEURAL NETWORKS;

EID: 0032155316     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-8655(98)00083-X     Document Type: Article
Times cited : (84)

References (10)
  • 2
    • 0027098279 scopus 로고
    • Fuzzy set theoretic measures for automatic feature evaluation: II
    • Pal, S.K., 1992. Fuzzy set theoretic measures for automatic feature evaluation: II. Information Sciences 64, 165-179.
    • (1992) Information Sciences , vol.64 , pp. 165-179
    • Pal, S.K.1
  • 4
    • 0027577112 scopus 로고
    • Bayesian selection of important features for feedforward neural networks
    • Priddy, K.L., Rogers, S.K., Ruck, D.W., Tarr, G.L., Kabrisky, M., 1993. Bayesian selection of important features for feedforward neural networks. Neurocomputing 5, 91-103.
    • (1993) Neurocomputing , vol.5 , pp. 91-103
    • Priddy, K.L.1    Rogers, S.K.2    Ruck, D.W.3    Tarr, G.L.4    Kabrisky, M.5
  • 5
    • 0030248249 scopus 로고    scopus 로고
    • Improved feature screening in feedforward neural networks
    • Steppe, J.M., Bauer Jr., K.W., 1996. Improved feature screening in feedforward neural networks. Neurocomputing 13, 47-58.
    • (1996) Neurocomputing , vol.13 , pp. 47-58
    • Steppe, J.M.1    Bauer K.W., Jr.2
  • 6
    • 0031245693 scopus 로고    scopus 로고
    • Feature analysis: Neural network and fuzzy set theoretic approaches
    • De, R.K., Pal, N.R., Pal, S.K., 1997. Feature analysis: neural network and fuzzy set theoretic approaches. Pattern Recognition 30, 1579-1590.
    • (1997) Pattern Recognition , vol.30 , pp. 1579-1590
    • De, R.K.1    Pal, N.R.2    Pal, S.K.3
  • 7
    • 0030152722 scopus 로고    scopus 로고
    • Automated feature selection with a distinctive sensitive learning vector quantizer
    • Pregenzer, M., Pfurtscheller, G., Flotzinger, D., 1996. Automated feature selection with a distinctive sensitive learning vector quantizer. Neurocomputing 11, 19-29.
    • (1996) Neurocomputing , vol.11 , pp. 19-29
    • Pregenzer, M.1    Pfurtscheller, G.2    Flotzinger, D.3
  • 9
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 10
    • 0000966430 scopus 로고
    • A neural expert system with automated extraction of fuzzy if-then rules and its application to medical diagnosis
    • Lippmann, R.P., Moody, J.E., Touretzky, D.S (Eds.), Morgan Kaufmann, Los Altos
    • Hayashi, Y., 1991. A neural expert system with automated extraction of fuzzy if-then rules and its application to medical diagnosis. In: Lippmann, R.P., Moody, J.E., Touretzky, D.S (Eds.), Advances in Neural Information Processing Systems. Morgan Kaufmann, Los Altos, pp. 578-584.
    • (1991) Advances in Neural Information Processing Systems , pp. 578-584
    • Hayashi, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.