메뉴 건너뛰기




Volumn 45, Issue 2, 2008, Pages 368-383

Learning Bayesian networks from incomplete databases using a novel evolutionary algorithm

Author keywords

Bayesian networks; Data mining; Evolutionary algorithms; Machine learning

Indexed keywords

BAYESIAN NETWORKS; DATA MINING; DATABASE SYSTEMS; EVOLUTIONARY ALGORITHMS; LEARNING ALGORITHMS;

EID: 43249121828     PISSN: 01679236     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dss.2008.01.002     Document Type: Article
Times cited : (40)

References (54)
  • 1
    • 0031221603 scopus 로고    scopus 로고
    • Decision support for real-time telemarketing operations through Bayesian network learning
    • Ahn J.-H., and Ezawa K.J. Decision support for real-time telemarketing operations through Bayesian network learning. Decision Support Systems 21 1 (September 1997) 17-27
    • (1997) Decision Support Systems , vol.21 , Issue.1 , pp. 17-27
    • Ahn, J.-H.1    Ezawa, K.J.2
  • 6
    • 0037322292 scopus 로고    scopus 로고
    • Learning Bayesian networks in the space of structures by estimation of distribution algorithms
    • Blanco R., Inza I., and Larrañaga P. Learning Bayesian networks in the space of structures by estimation of distribution algorithms. International journal of Intelligent Systems 18 2 (2003) 205-220
    • (2003) International journal of Intelligent Systems , vol.18 , Issue.2 , pp. 205-220
    • Blanco, R.1    Inza, I.2    Larrañaga, P.3
  • 8
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: an information-theory based approach
    • Cheng J., Greiner R., Kelly J., Bell D., and Liu W. Learning Bayesian networks from data: an information-theory based approach. Artificial Intelligence 137 (2002) 43-90
    • (2002) Artificial Intelligence , vol.137 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.4    Liu, W.5
  • 9
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian network structures
    • Chickering D.M. Learning equivalence classes of Bayesian network structures. Journal of Machine Learning Research 2 (2002) 445-498
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 445-498
    • Chickering, D.M.1
  • 10
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9 4 (1992) 309-347
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 20
    • 43249085337 scopus 로고    scopus 로고
    • D. Heckerman. A tutorial on learning Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research Adv. Technol. Div., Redmond, WA, 1995.
    • D. Heckerman. A tutorial on learning Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research Adv. Technol. Div., Redmond, WA, 1995.
  • 21
    • 0000047545 scopus 로고    scopus 로고
    • Inferring informational goals from free-text queries: a Bayesian approach
    • Cooper G.F., and Moral S. (Eds), Morgan Kaufmann, Wisconsin
    • Heckerman D., and Horvitz E. Inferring informational goals from free-text queries: a Bayesian approach. In: Cooper G.F., and Moral S. (Eds). Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (July 1998), Morgan Kaufmann, Wisconsin 230-237
    • (1998) Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence , pp. 230-237
    • Heckerman, D.1    Horvitz, E.2
  • 25
    • 34250013587 scopus 로고    scopus 로고
    • Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining
    • Huang Z., Li J., Su H., Watts G.S., and Chen H. Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining. Decision Support Systems 43 4 (August 2007) 1207-1225
    • (2007) Decision Support Systems , vol.43 , Issue.4 , pp. 1207-1225
    • Huang, Z.1    Li, J.2    Su, H.3    Watts, G.S.4    Chen, H.5
  • 27
    • 10644221921 scopus 로고    scopus 로고
    • Stochastic ordering and robustness in classification from a Bayesian network
    • Kim S.-H. Stochastic ordering and robustness in classification from a Bayesian network. Decision Support Systems 39 3 (May 2005) 253-266
    • (2005) Decision Support Systems , vol.39 , Issue.3 , pp. 253-266
    • Kim, S.-H.1
  • 30
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: an approach based on the MDL principle
    • Lam W., and Bacchus F. Learning Bayesian belief networks: an approach based on the MDL principle. Computational Intelligence 10 (1994) 269-293
    • (1994) Computational Intelligence , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 33
    • 33750475608 scopus 로고    scopus 로고
    • A Bayesian belief network for IT implementation decision support
    • Lauria E.J.M., and Duchessi P.J. A Bayesian belief network for IT implementation decision support. Decision Support Systems 42 3 (December 2006) 1573-1588
    • (2006) Decision Support Systems , vol.42 , Issue.3 , pp. 1573-1588
    • Lauria, E.J.M.1    Duchessi, P.J.2
  • 35
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • Lauritzen S.L., and Spiegelhalter D.J. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society (B) 50 2 (1988) 157-224
    • (1988) Journal of the Royal Statistical Society (B) , vol.50 , Issue.2 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 40
    • 0033685826 scopus 로고    scopus 로고
    • An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering
    • Peña J.M., Lozano J.A., and Larrañaga P. An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering. Pattern Recognition Letters 21 (2000) 779-786
    • (2000) Pattern Recognition Letters , vol.21 , pp. 779-786
    • Peña, J.M.1    Lozano, J.A.2    Larrañaga, P.3
  • 41
    • 0036532762 scopus 로고    scopus 로고
    • Learning recursive Bayesian multinets for data clustering by means of constructive induction
    • Peña J.M., Lozano J.A., and Larrañaga P. Learning recursive Bayesian multinets for data clustering by means of constructive induction. Machine Learning 47 (2002) 63-89
    • (2002) Machine Learning , vol.47 , pp. 63-89
    • Peña, J.M.1    Lozano, J.A.2    Larrañaga, P.3
  • 43
    • 0344328840 scopus 로고    scopus 로고
    • Efficient parameter learning in Bayesian networks from incomplete databases
    • Knowledge Median Institute, The Open University
    • Ramoni M., and Sebastiani P. Efficient parameter learning in Bayesian networks from incomplete databases. Technical Report KMI-TR-41 (1997), Knowledge Median Institute, The Open University
    • (1997) Technical Report KMI-TR-41
    • Ramoni, M.1    Sebastiani, P.2
  • 44
    • 0344328840 scopus 로고    scopus 로고
    • The use of exogenous knowledge to learn Bayesian networks from incomplete databases
    • Knowledge Median Institute, The Open University
    • Ramoni M., and Sebastiani P. The use of exogenous knowledge to learn Bayesian networks from incomplete databases. Technical Report KMI-TR-44 (1997), Knowledge Median Institute, The Open University
    • (1997) Technical Report KMI-TR-44
    • Ramoni, M.1    Sebastiani, P.2
  • 45
    • 0043198674 scopus 로고    scopus 로고
    • Robust learning with missing data
    • Ramoni M., and Sebastiani P. Robust learning with missing data. Machine Learning 45 (2001) 147-170
    • (2001) Machine Learning , vol.45 , pp. 147-170
    • Ramoni, M.1    Sebastiani, P.2
  • 48
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: our view of the state of the art
    • Schafer J.L., and Graham J.W. Missing data: our view of the state of the art. Psychological Methods 7 2 (2002) 147-177
    • (2002) Psychological Methods , vol.7 , Issue.2 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 50
    • 4444383943 scopus 로고    scopus 로고
    • An efficient data mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach
    • Wong M.L., and Leung K.S. An efficient data mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach. IEEE Transactions on Evolutionary Computation 8 4 (August 2004) 378-404
    • (2004) IEEE Transactions on Evolutionary Computation , vol.8 , Issue.4 , pp. 378-404
    • Wong, M.L.1    Leung, K.S.2
  • 51
    • 0033076357 scopus 로고    scopus 로고
    • Using evolutionary programming and minimum description length principle for data mining of Bayesian networks
    • Wong M.L., Lam W., and Leung K.S. Using evolutionary programming and minimum description length principle for data mining of Bayesian networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 21 (February 1999) 174-178
    • (1999) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.21 , pp. 174-178
    • Wong, M.L.1    Lam, W.2    Leung, K.S.3
  • 52
    • 4544296304 scopus 로고    scopus 로고
    • Data mining of Bayesian networks using cooperative coevolution
    • Wong M.L., Lee S.Y., and Leung K.S. Data mining of Bayesian networks using cooperative coevolution. Decision Support Systems 38 3 (December 2004) 451-472
    • (2004) Decision Support Systems , vol.38 , Issue.3 , pp. 451-472
    • Wong, M.L.1    Lee, S.Y.2    Leung, K.S.3
  • 53
    • 0002082928 scopus 로고    scopus 로고
    • Issues and problems in applying neural computing to target marketing
    • Zahavi J., and Levin N. Issues and problems in applying neural computing to target marketing. Journal of Direct Marketing 11 4 (1997) 63-75
    • (1997) Journal of Direct Marketing , vol.11 , Issue.4 , pp. 63-75
    • Zahavi, J.1    Levin, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.