-
1
-
-
85017343247
-
Belief networks construction using the minimum description length principle
-
Bouckaert, R. R., "Belief networks construction using the minimum description length principle", Lecture Notes in Computer Science, 747, pp. 41-48. 1993
-
(1993)
Lecture Notes in Computer Science
, vol.747
, pp. 41-48
-
-
Bouckaert, R.R.1
-
2
-
-
0030124955
-
A guide to the literature on learning probabilistic networks from data
-
Buntine, W., "A guide to the literature on learning probabilistic networks from data", IEEE Transactions on Knowledge and Data Engineering, 8, pp. 195-210, 1996.
-
(1996)
IEEE Transactions on Knowledge and Data Engineering
, vol.8
, pp. 195-210
-
-
Buntine, W.1
-
3
-
-
0026374073
-
Bayesian networks without tears
-
Charniak, E, "Bayesian Networks Without Tears," AI Magazine 12 (4), pp. 50 - 63, 1991.
-
(1991)
AI Magazine
, vol.12
, Issue.4
, pp. 50-63
-
-
Charniak, E.1
-
4
-
-
0003846047
-
Learning Bayesian networks is NP-hard
-
Microsoft Research
-
Chickering, D. M., Geiger, D. and Heckerman, D., "Learning Bayesian Networks is NP-Hard," Technical Report MSR-TR-94-17, Microsoft Research, 1994.
-
(1994)
Technical Report
, vol.MSR-TR-94-17
-
-
Chickering, D.M.1
Geiger, D.2
Heckerman, D.3
-
5
-
-
0002157592
-
Learning Bayesian networks: Search methods and experimental results
-
Chickering, D. M., Geiger, D., and Heckerman, D., "Learning Bayesian networks: Search methods and experimental results", In Preliminary Papers of the Fifth International Workshop on Artificial Intelligence and Statistics, pp. 112-128. 1995
-
(1995)
Preliminary Papers of the Fifth International Workshop on Artificial Intelligence and Statistics
, pp. 112-128
-
-
Chickering, D.M.1
Geiger, D.2
Heckerman, D.3
-
6
-
-
84933530882
-
Approximating discrete probability distributions with dependence tees
-
Chow C. K and Liu C. N, "Approximating discrete probability distributions with dependence tees", IEEE Trans. Inform. Theory, Vol. 14, no. 5, pp. 462-467, 1968.
-
(1968)
IEEE Trans. Inform. Theory
, vol.14
, Issue.5
, pp. 462-467
-
-
Chow, C.K.1
Liu, C.N.2
-
7
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F. and Herskovits, E., "A Bayesian method for the induction of probabilistic networks from data", Machine Learning, 9, pp. 309-348. 1992.
-
(1992)
Machine Learning
, vol.9
, pp. 309-348
-
-
Cooper, G.F.1
Herskovits, E.2
-
8
-
-
0036856515
-
Ant colony optimization for learning Bayesian networks
-
de Campos, L. M., Fernández-Luna, J M., Gámez, J.A., and Puerta, J.M., "Ant colony optimization for learning Bayesian networks", International Journal of Approximate Reasoning, 31, pp. 291-311, 2002.
-
(2002)
International Journal of Approximate Reasoning
, vol.31
, pp. 291-311
-
-
De Campos, L.M.1
Fernández-Luna, J.M.2
Gámez, J.A.3
Puerta, J.M.4
-
9
-
-
0034174383
-
A new approach for learning belief networks using independence criteria
-
de Campos, L.M and Huete, J. F., "A new approach for learning belief networks using independence criteria", International Journal of Approximate Reasoning, 24, pp. 11-37, 2000.
-
(2000)
International Journal of Approximate Reasoning
, vol.24
, pp. 11-37
-
-
De Campos, L.M.1
Huete, J.F.2
-
10
-
-
2442606176
-
-
Springer-Verlag, New York
-
Glover, F., Laguna, M. and Marti, R., "Scatter Search", Advances in Evolutionary Computation: Theory and Applications, Springer-Verlag, New York, pp. 519 -537, 2003.
-
(2003)
"Scatter Search", Advances in Evolutionary Computation: Theory and Applications
, pp. 519-537
-
-
Glover, F.1
Laguna, M.2
Marti, R.3
-
11
-
-
0003846041
-
A tutorial on learning with Bayesian networks
-
Microsoft Research, Redmond, Washington
-
Heckerman, D, "A Tutorial on Learning with Bayesian Networks", Technical Report # MSR-TR-95-06, Microsoft Research, Redmond, Washington, 1996.
-
(1996)
Technical Report # MSR-TR-95-06
, vol.MSR-TR-95-06
-
-
Heckerman, D.1
-
13
-
-
0028482006
-
Learning Bayesian belief networks: An approach based on the MDL principle
-
Lam, W and Bacchus, F., "Learning Bayesian belief networks: An approach based on the MDL principle", Computational Intelligence, 10, pp. 269-293. 1994.
-
(1994)
Computational Intelligence
, vol.10
, pp. 269-293
-
-
Lam, W.1
Bacchus, F.2
-
14
-
-
0030245966
-
Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters
-
Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R., and Kuijpers, C.,"Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters", IEEE Trans. on Pattern Analysis and Machine Intelligence, 18, pp. 912-926, 1996.
-
(1996)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.18
, pp. 912-926
-
-
Larrañaga, P.1
Poza, M.2
Yurramendi, Y.3
Murga, R.4
Kuijpers, C.5
-
15
-
-
15744380902
-
Commercialization of EPRI's Generator Expert Monitoring System (GEMS)
-
EPRI, Phoenix, Arizona
-
Morjaia, M. F., Rink F., Smith W., Klempner G., Burns C., and Stein J., "Commercialization of EPRI's Generator Expert Monitoring System (GEMS)", in Expert System Application for the Electric Power Industry, EPRI, Phoenix, Arizona, 1993.
-
(1993)
Expert System Application for the Electric Power Industry
-
-
Morjaia, M.F.1
Rink, F.2
Smith, W.3
Klempner, G.4
Burns, C.5
Stein, J.6
-
18
-
-
0042456355
-
The recovery of causal polytrees from statistical data
-
Rebane G. and Pearl J., "The recovery of causal polytrees from statistical data", in Uncertainty in Artificial Intelligence 3, pp. 175-182, 1989.
-
(1989)
Uncertainty in Artificial Intelligence
, vol.3
, pp. 175-182
-
-
Rebane, G.1
Pearl, J.2
-
19
-
-
0029362478
-
Probabilistic diversification and intensification in local search for vehicle routing
-
Rochat Y., and Taillard E. D., "Probabilistic Diversification and Intensification in Local Search for Vehicle Routing", Journal of Heuristics, vol. 1, no. 1, pp. 147-167, 1995.
-
(1995)
Journal of Heuristics
, vol.1
, Issue.1
, pp. 147-167
-
-
Rochat, Y.1
Taillard, E.D.2
-
21
-
-
3543146577
-
A evolutionary algorithmic approach to learning a Bayesian network from complete data
-
Tillett J and Sahin F "A evolutionary algorithmic approach to learning a Bayesian network from complete data", SPIE Defense and Security Symposium, 2004.
-
(2004)
SPIE Defense and Security Symposium
-
-
Tillett, J.1
Sahin, F.2
|