메뉴 건너뛰기




Volumn 42, Issue 3, 2006, Pages 1573-1588

A Bayesian Belief Network for IT implementation decision support

Author keywords

Bayesian Belief Networks (BBNs); Decision Support Systems (DSSs); Information Technology (IT) implementation

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA REDUCTION; GRAPHIC METHODS; INFORMATION MANAGEMENT; PROBABILISTIC LOGICS; PROBABILITY DISTRIBUTIONS; STATISTICAL METHODS;

EID: 33750475608     PISSN: 01679236     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dss.2006.01.003     Document Type: Article
Times cited : (73)

References (35)
  • 1
    • 1242321013 scopus 로고    scopus 로고
    • Causal modeling alternatives in operations research: overview and application
    • Anderson R., and Vastag G. Causal modeling alternatives in operations research: overview and application. European Journal of Operational Research 156 1 (2004) 92-109
    • (2004) European Journal of Operational Research , vol.156 , Issue.1 , pp. 92-109
    • Anderson, R.1    Vastag, G.2
  • 2
    • 20444503386 scopus 로고    scopus 로고
    • A Bayesian network estimation of the service-profit chain for transport service satisfaction
    • Anderson R., Mackoy R., Thompson V., and Harrell G. A Bayesian network estimation of the service-profit chain for transport service satisfaction. Decision Sciences 35 4 (2004) 665-689
    • (2004) Decision Sciences , vol.35 , Issue.4 , pp. 665-689
    • Anderson, R.1    Mackoy, R.2    Thompson, V.3    Harrell, G.4
  • 4
    • 0002337925 scopus 로고
    • A framework for managing IT-enabled change
    • Benjamin R., and Levinson E. A framework for managing IT-enabled change. Sloan Management Review 34 4 (1993) 23-34
    • (1993) Sloan Management Review , vol.34 , Issue.4 , pp. 23-34
    • Benjamin, R.1    Levinson, E.2
  • 5
    • 21844507003 scopus 로고
    • Robust vehicle routing DSS and road networks on a European scale
    • Beulens. Robust vehicle routing DSS and road networks on a European scale. Annals of Operations Research 55 (1995) 489-509
    • (1995) Annals of Operations Research , vol.55 , pp. 489-509
    • Beulens1
  • 6
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9 4 (1992) 309-347
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 8
    • 0002251094 scopus 로고    scopus 로고
    • Bucket elimination: a unifying framework for probabilistic inference
    • Horvitz E., and Jensen F. (Eds), Morgan Kaufmann Publishers, San Francisco
    • Dechter R. Bucket elimination: a unifying framework for probabilistic inference. In: Horvitz E., and Jensen F. (Eds). Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence (UAI-96) (1996), Morgan Kaufmann Publishers, San Francisco 211-219
    • (1996) Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence (UAI-96) , pp. 211-219
    • Dechter, R.1
  • 10
    • 0001839007 scopus 로고    scopus 로고
    • Cognitive elements in the implementation of new technology: can less information provide more benefits?
    • Griffith T., and Northcraft G. Cognitive elements in the implementation of new technology: can less information provide more benefits?. MIS Quarterly 20 1 (1996) 99-111
    • (1996) MIS Quarterly , vol.20 , Issue.1 , pp. 99-111
    • Griffith, T.1    Northcraft, G.2
  • 11
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian Networks
    • Jordan M. (Ed), MIT Press, Cambridge, MA
    • Heckermann D. A tutorial on learning with Bayesian Networks. In: Jordan M. (Ed). Learning in Graphical Models (1999), MIT Press, Cambridge, MA
    • (1999) Learning in Graphical Models
    • Heckermann, D.1
  • 12
    • 0000632751 scopus 로고
    • Learning Bayesian networks: the combination of knowledge and statistical data
    • Morgan Kaufmann Publishers, San Francisco, CA
    • Heckerman D., Geiger D., and Chickering D.M. Learning Bayesian networks: the combination of knowledge and statistical data. Proc. 10th Conf. Uncertainty in Artificial Intelligence (1994), Morgan Kaufmann Publishers, San Francisco, CA 293-301
    • (1994) Proc. 10th Conf. Uncertainty in Artificial Intelligence , pp. 293-301
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 14
    • 0001698979 scopus 로고
    • Bayesian updating in causal probabilistic networks by local computations
    • Jensen F., Lauritzen S., and Olesen K. Bayesian updating in causal probabilistic networks by local computations. Computational Statistics Quarterly 4 (1990) 269-282
    • (1990) Computational Statistics Quarterly , vol.4 , pp. 269-282
    • Jensen, F.1    Lauritzen, S.2    Olesen, K.3
  • 16
    • 0031655182 scopus 로고    scopus 로고
    • Spatial Decision Support Systems for vehicle routing
    • Keenan P. Spatial Decision Support Systems for vehicle routing. Decision Support Systems January 22 1 (1998) 65-71
    • (1998) Decision Support Systems , vol.January 22 , Issue.1 , pp. 65-71
    • Keenan, P.1
  • 17
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick S., Gelatt D., and Vecchi M. Optimization by simulated annealing. Science 220 (1983) 671-680
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, D.2    Vecchi, M.3
  • 19
    • 0036250059 scopus 로고    scopus 로고
    • The use of a Bayesian network in the design of a Decision Support System for growing malting barley without use of pesticides
    • Kristensen, and Rasmussen I. The use of a Bayesian network in the design of a Decision Support System for growing malting barley without use of pesticides. Computers and Electronics in Agriculture 33 3 (2002) 197-217
    • (2002) Computers and Electronics in Agriculture , vol.33 , Issue.3 , pp. 197-217
    • Kristensen1    Rasmussen, I.2
  • 20
    • 0028482006 scopus 로고    scopus 로고
    • W. Lam, F. Bachus. Learning Bayesian Networks. An approach based on the MDL principle Computational Intelligence 10(3), 269-293 (1994).
  • 22
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • Lauritzen S., and Spiegelhalter D. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society. Series B 50 2 (1988) 157-224
    • (1988) Journal of the Royal Statistical Society. Series B , vol.50 , Issue.2 , pp. 157-224
    • Lauritzen, S.1    Spiegelhalter, D.2
  • 24
    • 0036438511 scopus 로고    scopus 로고
    • Why do people use Information Technology?: a critical review of the technology acceptance model
    • Legris P., Ingham J., and Collerette P. Why do people use Information Technology?: a critical review of the technology acceptance model. Information and Management 40 3 (2003) 191-204
    • (2003) Information and Management , vol.40 , Issue.3 , pp. 191-204
    • Legris, P.1    Ingham, J.2    Collerette, P.3
  • 25
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov chain Monte Carlo methods
    • Dept. of Computer Science, University of Toronto
    • Neal R. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1 (1993), Dept. of Computer Science, University of Toronto
    • (1993) Technical Report CRG-TR-93-1
    • Neal, R.1
  • 27
    • 32644462458 scopus 로고    scopus 로고
    • Bayesian methods for intelligent data analysis
    • Berthold M., and Hand D.J. (Eds), Springer, New York, NY
    • Ramoni, and Sebastiani P. Bayesian methods for intelligent data analysis. In: Berthold M., and Hand D.J. (Eds). Intelligent Data Analysis: An Introduction (1998), Springer, New York, NY
    • (1998) Intelligent Data Analysis: An Introduction
    • Ramoni1    Sebastiani, P.2
  • 28
    • 0000318553 scopus 로고
    • Stochastic complexity and modeling
    • Rissanen J. Stochastic complexity and modeling. Annals of Statistics 14 3 (1986) 1080-1100
    • (1986) Annals of Statistics , vol.14 , Issue.3 , pp. 1080-1100
    • Rissanen, J.1
  • 30
    • 33750454400 scopus 로고    scopus 로고
    • Entropic priors for discrete probabilistic networks and for mixtures of Gaussian models
    • Mohammad-Djafari A. (Ed) http://arxiv.org/abs/physics/0201016
    • Rodríguez C. Entropic priors for discrete probabilistic networks and for mixtures of Gaussian models. In: Mohammad-Djafari A. (Ed). Maximum Entropy and Bayesian Methods in Science and Engineering (2001). http://arxiv.org/abs/physics/0201016 http://arxiv.org/abs/physics/0201016
    • (2001) Maximum Entropy and Bayesian Methods in Science and Engineering
    • Rodríguez, C.1
  • 32
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics 6 (1978) 461-464
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 34
    • 33750479808 scopus 로고    scopus 로고
    • C. van Koten, A. Gray, An application of Bayesian network for predicting object-oriented software maintainability, Information Science Discussion Paper Series, Number 2005/02, ISSN 1172-6024, University of Otago, Dunedin, New Zealand. http://www.business.otago.ac.nz/infosci/pubs/papers/papers/dp2005-02.pdf.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.