메뉴 건너뛰기




Volumn 26, Issue 2, 2006, Pages 252-271

Multi-symplectic Runge-Kutta-type methods for Hamiltonian wave equations

Author keywords

Hamiltonian PDEs; Multi symplectic; Non linear wave equations; Partitioned Runge Kutta method; Runge Kutta method; Stability analysis

Indexed keywords

HAMILTONIANS; WAVE EQUATIONS;

EID: 33645743266     PISSN: 02724979     EISSN: 14643642     Source Type: Journal    
DOI: 10.1093/imanum/dri042     Document Type: Article
Times cited : (19)

References (26)
  • 2
    • 1042304391 scopus 로고    scopus 로고
    • Multisymplectic box schemes and the Korteweg-de Vries equation
    • ASCHER, U. M. & MCLACHLAN, R. I. (2004) Multisymplectic box schemes and the Korteweg-de Vries equation. Appl. Numer. Math., 48, 255-269.
    • (2004) Appl. Numer. Math. , vol.48 , pp. 255-269
    • Ascher, U.M.1    Mclachlan, R.I.2
  • 3
    • 0030695841 scopus 로고    scopus 로고
    • A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities
    • BRIDGES, T. J. (1997a) A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities. Proc. R. Soc. Lond. A, 453, 1365-1395.
    • (1997) Proc. R. Soc. Lond. A , vol.453 , pp. 1365-1395
    • Bridges, T.J.1
  • 4
    • 0042137401 scopus 로고    scopus 로고
    • Multi-symplectic structures and wave propagation
    • BRIDGES, T. J. (1997b) Multi-symplectic structures and wave propagation. Math. Proc. Camb. Philos. Soc., 121, 147-190.
    • (1997) Math. Proc. Camb. Philos. Soc. , vol.121 , pp. 147-190
    • Bridges, T.J.1
  • 5
    • 33746421439 scopus 로고    scopus 로고
    • Unstable eigenvalues and the linearization about solitary waves and fronts with symmetry
    • BRIDGES, T. J. & DERKS, G. (1999) Unstable eigenvalues and the linearization about solitary waves and fronts with symmetry. Proc. R. Soc. Lond. A, 455, 2427-2469.
    • (1999) Proc. R. Soc. Lond. A , vol.455 , pp. 2427-2469
    • Bridges, T.J.1    Derks, G.2
  • 6
    • 0036436270 scopus 로고    scopus 로고
    • Linear stability of solitary wave solutions of the Kawahara equation and its generalizations
    • BRIDGES, T. J. & DERKS, G. (2002a) Linear stability of solitary wave solutions of the Kawahara equation and its generalizations. SIAM J. Math. Anal., 33, 1356-1378.
    • (2002) SIAM J. Math. Anal. , vol.33 , pp. 1356-1378
    • Bridges, T.J.1    Derks, G.2
  • 7
    • 0037112236 scopus 로고    scopus 로고
    • Stability of solitary waves of the fifth-order KdV equation: A numerical framework
    • BRIDGES, T. J. & DERKS, G. (2002b) Stability of solitary waves of the fifth-order KdV equation: a numerical framework. Physica D, 172, 190-216.
    • (2002) Physica D , vol.172 , pp. 190-216
    • Bridges, T.J.1    Derks, G.2
  • 8
    • 0037832748 scopus 로고    scopus 로고
    • Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity
    • BRIDGES, T. J. & REICH, S. (2001a) Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A, 284, 184-193.
    • (2001) Phys. Lett. A , vol.284 , pp. 184-193
    • Bridges, T.J.1    Reich, S.2
  • 9
    • 0039152065 scopus 로고    scopus 로고
    • Multi-symplectic spectral discretization for the Zakharov-Kuznetsov and shallow-water equations
    • BRIDGES, T. J. & REICH, S. (2001b) Multi-symplectic spectral discretization for the Zakharov-Kuznetsov and shallow-water equations. Physica D, 152, 491-504.
    • (2001) Physica D , vol.152 , pp. 491-504
    • Bridges, T.J.1    Reich, S.2
  • 10
    • 0003171736 scopus 로고
    • A symplectic integration for separable Hamiltonian functions
    • CANDY, J. & ROZMUS, W. (1991) A symplectic integration for separable Hamiltonian functions. J. Comput. Phys., 92, 230-256.
    • (1991) J. Comput. Phys. , vol.92 , pp. 230-256
    • Candy, J.1    Rozmus, W.2
  • 11
    • 33646388286 scopus 로고
    • Fourth-order symplectic integration
    • FOREST, F. & RUTH, R. D. (1990) Fourth-order symplectic integration. Physica D, 43, 105-117.
    • (1990) Physica D , vol.43 , pp. 105-117
    • Forest, F.1    Ruth, R.D.2
  • 14
    • 27344447911 scopus 로고    scopus 로고
    • Spurious behavior of a symplectic integrator
    • to appear
    • HONG, J. L., LIU, H. Y. & SUN, G. (2005a) Spurious behavior of a symplectic integrator. Comput. Math. Appl. (to appear).
    • (2005) Comput. Math. Appl.
    • Hong, J.L.1    Liu, H.Y.2    Sun, G.3
  • 15
    • 85009774577 scopus 로고    scopus 로고
    • The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs
    • Epub ahead of print September 29, 2005: to appear
    • HONG, J. L., LIU, H. Y. & SUN, G. (2005b) The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs. Math. Comp. (Epub ahead of print September 29, 2005: to appear).
    • (2005) Math. Comp.
    • Hong, J.L.1    Liu, H.Y.2    Sun, G.3
  • 16
    • 84867955067 scopus 로고    scopus 로고
    • A novel numerical approach to simulating nonlinear Schrödinger equations with varying coefficients
    • HONG, J. L. & LIU, Y. (2003) A novel numerical approach to simulating nonlinear Schrödinger equations with varying coefficients. Appl. Math. Lett., 16, 759-765.
    • (2003) Appl. Math. Lett. , vol.16 , pp. 759-765
    • Hong, J.L.1    Liu, Y.2
  • 17
    • 5644282808 scopus 로고    scopus 로고
    • Symplectic RK methods and symplectic PRK methods with real eigenvalues
    • LIU, H. Y. & SUN, G. (2004) Symplectic RK methods and symplectic PRK methods with real eigenvalues. J. Comput. Math., 22, 769-776.
    • (2004) J. Comput. Math. , vol.22 , pp. 769-776
    • Liu, H.Y.1    Sun, G.2
  • 18
    • 0032476963 scopus 로고    scopus 로고
    • Multisymplectic geometry, variational integrators, and nonlinear PDEs
    • MARSDEN, J. E., PATRICK, G. P. & SHKOLLER, S. (1999) Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys., 199, 351.
    • (1999) Commun. Math. Phys. , vol.199 , pp. 351
    • Marsden, J.E.1    Patrick, G.P.2    Shkoller, S.3
  • 19
    • 0013039699 scopus 로고    scopus 로고
    • Multi symplectic geometry, covariant Hamiltonians and water waves
    • MARSDEN, J. E. & SHKOLLER, S. (1999) Multi symplectic geometry, covariant Hamiltonians and water waves. Math. Proc. Camb. Philos. Soc., 125, 553.
    • (1999) Math. Proc. Camb. Philos. Soc. , vol.125 , pp. 553
    • Marsden, J.E.1    Shkoller, S.2
  • 22
    • 0242339583 scopus 로고    scopus 로고
    • Backward error analysis for multi-symplectic integration methods
    • MOORE, B. E. & REICH, S. (2003) Backward error analysis for multi-symplectic integration methods. Numer. Math., 95, 625-652.
    • (2003) Numer. Math. , vol.95 , pp. 625-652
    • Moore, B.E.1    Reich, S.2
  • 23
    • 0043187304 scopus 로고    scopus 로고
    • Finite volume methods for multi-symplectic PDEs
    • REICH, S. (2000a) Finite volume methods for multi-symplectic PDEs. BIT, 40, 559-582.
    • (2000) BIT , vol.40 , pp. 559-582
    • Reich, S.1
  • 24
    • 0034687898 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations
    • REICH, S. (2000b) Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. J. Comp. Phys., 157, 473-499.
    • (2000) J. Comp. Phys. , vol.157 , pp. 473-499
    • Reich, S.1
  • 26
    • 0034640067 scopus 로고    scopus 로고
    • Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation
    • ZHAO, P. F. & QIN, M. Z. (2000) Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation. J. Phys. A, 33, 3613-3626.
    • (2000) J. Phys. A , vol.33 , pp. 3613-3626
    • Zhao, P.F.1    Qin, M.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.