메뉴 건너뛰기




Volumn 26, Issue 6, 2007, Pages 805-818

A convex optimization approach to modeling consumer heterogeneity in conjoint estimation

Author keywords

Bayesian analysis; Data mining; Econometric models; Estimation and other statistical techniques; Hierarchical bayes analysis; Marketing research; Regression and other statistical techniques

Indexed keywords


EID: 38749149236     PISSN: 07322399     EISSN: 1526548X     Source Type: Journal    
DOI: 10.1287/mksc.1070.0291     Document Type: Article
Times cited : (91)

References (47)
  • 1
    • 0347192053 scopus 로고    scopus 로고
    • Marketing models of consumer heterogeneity
    • March/April
    • Allenby, G. M., P. E. Rossi. 1999. Marketing models of consumer heterogeneity. J. Econometrics 89(March/April) 57-78.
    • (1999) J. Econometrics , vol.89 , pp. 57-78
    • Allenby, G.M.1    Rossi, P.E.2
  • 2
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Ando, R. K., T. Zhang. 2005. A framework for learning predictive structures from multiple tasks and unlabeled data. J. Machine Learn. Res. 6 1817-1853.
    • (2005) J. Machine Learn. Res , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 3
    • 0035538552 scopus 로고    scopus 로고
    • Improving parameter estimates and model prediction by aggregate customization in choice experiments
    • September
    • Arora, N., J. Huber. 2001. Improving parameter estimates and model prediction by aggregate customization in choice experiments. J. Consumer Res. 28(September).
    • (2001) J. Consumer Res , vol.28
    • Arora, N.1    Huber, J.2
  • 4
    • 0031187873 scopus 로고    scopus 로고
    • A Bayesian/information theoretic model of learning to learn via multiple task sampling
    • Baxter, J. 1997. A Bayesian/information theoretic model of learning to learn via multiple task sampling. Machine Learn. 28 7-39.
    • (1997) Machine Learn , vol.28 , pp. 7-39
    • Baxter, J.1
  • 6
    • 10844268720 scopus 로고    scopus 로고
    • A learning-based model for imputing missing levels in partial conjoint profiles
    • Bradlow, E., Y. Hu, T.-H. Ho. 2004. A learning-based model for imputing missing levels in partial conjoint profiles. J. Marketing Res. 41(4) 369-381.
    • (2004) J. Marketing Res , vol.41 , Issue.4 , pp. 369-381
    • Bradlow, E.1    Hu, Y.2    Ho, T.-H.3
  • 9
    • 0031189914 scopus 로고    scopus 로고
    • Multi-task learning
    • Caruana, R. 1997. Multi-task learning. Machine Learn. 28 41-75.
    • (1997) Machine Learn , vol.28 , pp. 41-75
    • Caruana, R.1
  • 10
    • 84972528615 scopus 로고
    • Bayesian experimental design: A review
    • Chaloner, K., I. Verdinelli. 1995. Bayesian experimental design: A review. Statistical Sci. 10(3) 273-304.
    • (1995) Statistical Sci , vol.10 , Issue.3 , pp. 273-304
    • Chaloner, K.1    Verdinelli, I.2
  • 11
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • Cucker, F., S. Smale. 2002. On the mathematical foundations of learning. Bull. Amer. Math. Soc. 39(1) 1-49.
    • (2002) Bull. Amer. Math. Soc , vol.39 , Issue.1 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 12
    • 26044433213 scopus 로고    scopus 로고
    • Prediction in marketing using the support vector machine
    • Cui, D., D. Curry. 2005. Prediction in marketing using the support vector machine. Marketing Sci. 24(4) 595-615.
    • (2005) Marketing Sci , vol.24 , Issue.4 , pp. 595-615
    • Cui, D.1    Curry, D.2
  • 14
    • 21844450509 scopus 로고    scopus 로고
    • Generalized robust conjoint estimation
    • Evgeniou, T., C. Boussios, G. Zacharia. 2005. Generalized robust conjoint estimation. Marketing Sci. 24(3) 415-429.
    • (2005) Marketing Sci , vol.24 , Issue.3 , pp. 415-429
    • Evgeniou, T.1    Boussios, C.2    Zacharia, G.3
  • 16
    • 0001735517 scopus 로고
    • On the mathematical foundations of theoretical statistics
    • Fisher, R. A. 1922. On the mathematical foundations of theoretical statistics. Phil. Trans. Roy. Soc., Ser. A 222-326.
    • (1922) Phil. Trans. Roy. Soc., Ser. A , pp. 222-326
    • Fisher, R.A.1
  • 17
    • 4043096622 scopus 로고    scopus 로고
    • A choice model with conjunctive, disjunctive, and compensatory screening rules
    • Gilbride, T., G. M. Allenby. 2004. A choice model with conjunctive, disjunctive, and compensatory screening rules. Marketing Sci. 23(3) 391-406.
    • (2004) Marketing Sci , vol.23 , Issue.3 , pp. 391-406
    • Gilbride, T.1    Allenby, G.M.2
  • 18
    • 33750503817 scopus 로고    scopus 로고
    • Estimating heterogenous EBA and economic screening rule choice models
    • Gilbride, T., G. M. Allenby. 2006. Estimating heterogenous EBA and economic screening rule choice models. Marketing Sci. 25(5) 494-509.
    • (2006) Marketing Sci , vol.25 , Issue.5 , pp. 494-509
    • Gilbride, T.1    Allenby, G.M.2
  • 19
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • Girosi, F., M. Jones, T. Poggio. 1995. Regularization theory and neural networks architectures. Neural Comput. 7 219-269.
    • (1995) Neural Comput , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 21
    • 26044462243 scopus 로고    scopus 로고
    • The impact of utility balance and endogeneity in conjoint analysis
    • Hauser, J., O. Toubia. 2005. The impact of utility balance and endogeneity in conjoint analysis. Marketing Sci. 24(3) 498-507.
    • (2005) Marketing Sci , vol.24 , Issue.3 , pp. 498-507
    • Hauser, J.1    Toubia, O.2
  • 22
    • 33847055178 scopus 로고    scopus 로고
    • Research on innovation: A review and agenda for marketing science
    • Hauser, J., G. J. Tellis, A. Griffin. 2005. Research on innovation: A review and agenda for marketing science. Marketing Sci. 25(6) 687-717.
    • (2005) Marketing Sci , vol.25 , Issue.6 , pp. 687-717
    • Hauser, J.1    Tellis, G.J.2    Griffin, A.3
  • 23
    • 0030506691 scopus 로고    scopus 로고
    • The importance of utility balance in efficient choice designs
    • August
    • Huber, J., K. Zwerina. 1996. The importance of utility balance in efficient choice designs. J. Marketing Res. 32(August) 308-317.
    • (1996) J. Marketing Res , vol.32 , pp. 308-317
    • Huber, J.1    Zwerina, K.2
  • 24
    • 33745119409 scopus 로고    scopus 로고
    • Multi-task feature and kernel selection for SVMs
    • Banff, Alberta, Canada
    • Jebara, T. 2004. Multi-task feature and kernel selection for SVMs. Proc. Twenty-First Internat. Conf. Machine Learning, Banff, Alberta, Canada, 55-63.
    • (2004) Proc. Twenty-First Internat. Conf. Machine Learning , pp. 55-63
    • Jebara, T.1
  • 26
    • 28444466267 scopus 로고    scopus 로고
    • Probabilistic subset-conjunctive models for heterogenous consumers
    • Jedidi, K., R. Kohli. 2005. Probabilistic subset-conjunctive models for heterogenous consumers. J. Marketing Res. 42 483-494.
    • (2005) J. Marketing Res , vol.42 , pp. 483-494
    • Jedidi, K.1    Kohli, R.2
  • 27
    • 30044437592 scopus 로고    scopus 로고
    • A fast dual algorithm for kernel logistic regression
    • Keerthi, S., K. Duan, S. Shevade, A. Poo. 2005. A fast dual algorithm for kernel logistic regression. Machine Learn. 61(1-3, November) 151-165.
    • (2005) Machine Learn , vol.61 , Issue.1 -3and NOVEMBER , pp. 151-165
    • Keerthi, S.1    Duan, K.2    Shevade, S.3    Poo, A.4
  • 28
    • 0030521288 scopus 로고    scopus 로고
    • Hierarchical Bayes conjoint analysis: Recovery of partworth heterogeneity from reduced experimental designs
    • Lenk, P. J., W. S. DeSarbo, P. E. Green, M. R. Young. 1996. Hierarchical Bayes conjoint analysis: Recovery of partworth heterogeneity from reduced experimental designs. Marketing Sci. 15(2) 173-91.
    • (1996) Marketing Sci , vol.15 , Issue.2 , pp. 173-191
    • Lenk, P.J.1    DeSarbo, W.S.2    Green, P.E.3    Young, M.R.4
  • 29
    • 20444473470 scopus 로고    scopus 로고
    • Dynamic models incorporating individual heterogeneity: Utility evolution in conjoint analysis
    • Liechty, J. C., D. K. H. Fong, W. S. DeSarbo. 2005. Dynamic models incorporating individual heterogeneity: Utility evolution in conjoint analysis. Marketing Sci. 24(2) 285-293.
    • (2005) Marketing Sci , vol.24 , Issue.2 , pp. 285-293
    • Liechty, J.C.1    Fong, D.K.H.2    DeSarbo, W.S.3
  • 30
    • 38549141668 scopus 로고    scopus 로고
    • Investigating endogeneity bias in marketing
    • 642-&30
    • Liu, Q., T. Otter, G. M. Allenby. 2007. Investigating endogeneity bias in marketing. Marketing Sci. 26(5) 642-&30.
    • (2007) Marketing Sci , vol.26 , Issue.5
    • Liu, Q.1    Otter, T.2    Allenby, G.M.3
  • 32
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • Micchelli, C., M. Pontil. 2005. On learning vector-valued functions. Neural Comput. 17 177-204.
    • (2005) Neural Comput , vol.17 , pp. 177-204
    • Micchelli, C.1    Pontil, M.2
  • 35
    • 21144475376 scopus 로고
    • A Bayesian approach to estimating household parameters
    • Rossi, P. E., G. M. Allenby. 1993. A Bayesian approach to estimating household parameters. J. Marketing Res. 30(2) 171-182.
    • (1993) J. Marketing Res , vol.30 , Issue.2 , pp. 171-182
    • Rossi, P.E.1    Allenby, G.M.2
  • 36
    • 0142231525 scopus 로고    scopus 로고
    • Bayesian statistics and marketing
    • Rossi, P. E., G. M. Allenby. 2003. Bayesian statistics and marketing. Marketing Sci. 22(3) 304-328.
    • (2003) Marketing Sci , vol.22 , Issue.3 , pp. 304-328
    • Rossi, P.E.1    Allenby, G.M.2
  • 38
    • 21144474350 scopus 로고
    • Linear model selection via cross-validation
    • Shao, J. 1993. Linear model selection via cross-validation. J. Amer. Statist. Assoc. 88(422) 486-494.
    • (1993) J. Amer. Statist. Assoc , vol.88 , Issue.422 , pp. 486-494
    • Shao, J.1
  • 39
    • 26044469182 scopus 로고    scopus 로고
    • A strict paired comparison linear programming approach to nonmetric conjoint analysis
    • J. E. Aronson, S. Zionts, eds, Quorum Books, Westport, CT
    • Srinivasan, V. 1998. A strict paired comparison linear programming approach to nonmetric conjoint analysis. J. E. Aronson, S. Zionts, eds. Operations Research: Methods, Models and Applications. Quorum Books, Westport, CT, 97-111.
    • (1998) Operations Research: Methods, Models and Applications , pp. 97-111
    • Srinivasan, V.1
  • 40
    • 33749968907 scopus 로고
    • Linear programming techniques for multidimensional analysis of preferences
    • Srinivasan, V., A. D. Shocker. 1973. Linear programming techniques for multidimensional analysis of preferences. Psychometrica 38(3) 337-369.
    • (1973) Psychometrica , vol.38 , Issue.3 , pp. 337-369
    • Srinivasan, V.1    Shocker, A.D.2
  • 41
    • 0003901612 scopus 로고    scopus 로고
    • Kluwer Academic Publishers, Dordrecht, The Netherlands
    • Thrun, S., L. Pratt. 1997. Learning to Learn. Kluwer Academic Publishers, Dordrecht, The Netherlands.
    • (1997) Learning to Learn
    • Thrun, S.1    Pratt, L.2
  • 43
    • 1442283678 scopus 로고    scopus 로고
    • Polyhedral methods for adaptive choice-based conjoint analysis
    • February
    • Toubia, O., J. R. Hauser, D. I. Simester. 2004. Polyhedral methods for adaptive choice-based conjoint analysis. J. Marketing Res. 46(February) 116-131.
    • (2004) J. Marketing Res , vol.46 , pp. 116-131
    • Toubia, O.1    Hauser, J.R.2    Simester, D.I.3
  • 44
  • 46
    • 0003241883 scopus 로고
    • Splines Models for Observational Data
    • SIAM, Philadelphia, PA
    • Wahba, G. 1990. Splines Models for Observational Data, Vol. 59. Series in Applied Mathematics. SIAM, Philadelphia, PA.
    • (1990) Series in Applied Mathematics , vol.59
    • Wahba, G.1
  • 47
    • 15944424353 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • Zhu, J., T. Hastie. 2005. Kernel logistic regression and the import vector machine. J. Computational Graphical Statist. 14(1) 185-205.
    • (2005) J. Computational Graphical Statist , vol.14 , Issue.1 , pp. 185-205
    • Zhu, J.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.