-
1
-
-
0034958947
-
Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care
-
Angus D, Linde-Zwirble W, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001;29:1303-10.
-
(2001)
Crit Care Med
, vol.29
, pp. 1303-1310
-
-
Angus, D.1
Linde-Zwirble, W.2
Lidicker, J.3
-
3
-
-
0030917203
-
Monocyte deactivation in septic patients: Restoration by IFN-gamma treatment
-
Docke WD, Randow F, Syrbe U, et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med 1997;3:678-81.
-
(1997)
Nat Med
, vol.3
, pp. 678-681
-
-
Docke, W.D.1
Randow, F.2
Syrbe, U.3
-
4
-
-
0037426726
-
The pathophysiology and treatment of sepsis
-
Hotchkiss R, Karl I. The pathophysiology and treatment of sepsis. N Engl J Med 2003;348:138-50.
-
(2003)
N Engl J Med
, vol.348
, pp. 138-150
-
-
Hotchkiss, R.1
Karl, I.2
-
5
-
-
16844369607
-
Natural regulatory T cells in infectious disease
-
Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol 2005;6:353-60.
-
(2005)
Nat Immunol
, vol.6
, pp. 353-360
-
-
Belkaid, Y.1
Rouse, B.T.2
-
6
-
-
0032701390
-
Selective defects of T lymphocyte function in patients with lethal intraabdominal infection
-
Heidecke CD, Hensler T, Weighardt H, et al. Selective defects of T lymphocyte function in patients with lethal intraabdominal infection. Am J Surg 1999;178:288-92.
-
(1999)
Am J Surg
, vol.178
, pp. 288-292
-
-
Heidecke, C.D.1
Hensler, T.2
Weighardt, H.3
-
7
-
-
0030994457
-
Distinct mechanisms of immunosuppression as a conseguence of major surgery
-
Hensler T, Hecker H, Heeg K, et al. Distinct mechanisms of immunosuppression as a conseguence of major surgery. Infect Immun 1997;65:2283-91.
-
(1997)
Infect Immun
, vol.65
, pp. 2283-2291
-
-
Hensler, T.1
Hecker, H.2
Heeg, K.3
-
8
-
-
0042886941
-
Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1 -like immunostimulation
-
Prass K, Meisel C, Hoflich C, et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1 -like immunostimulation. J Exp Med 2003;198:725-36.
-
(2003)
J Exp Med
, vol.198
, pp. 725-736
-
-
Prass, K.1
Meisel, C.2
Hoflich, C.3
-
10
-
-
0033431682
-
Prevention of lymphocyte cell death in sepsis improves survival in mice
-
Hotchkiss RS, Tinsley KW, Swanson PE, et al. Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc Natl Acad Sci USA 1999;96:14541-6.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 14541-14546
-
-
Hotchkiss, R.S.1
Tinsley, K.W.2
Swanson, P.E.3
-
11
-
-
2942527148
-
Akt decreases lymphocyte apoptosis and improves survival in sepsis
-
Bommhardt U, Chang KC, Swanson PE, et al. Akt decreases lymphocyte apoptosis and improves survival in sepsis. J Immunol 2004;172:7583-91.
-
(2004)
J Immunol
, vol.172
, pp. 7583-7591
-
-
Bommhardt, U.1
Chang, K.C.2
Swanson, P.E.3
-
12
-
-
0030685133
-
Lipopolysaccharide- binding protein is required to combat a murine Gram-negative bacterial infection
-
Jack R, Fan X, Bernheiden M, et al. Lipopolysaccharide- binding protein is required to combat a murine Gram-negative bacterial infection. Nature 1997;389:742-5.
-
(1997)
Nature
, vol.389
, pp. 742-745
-
-
Jack, R.1
Fan, X.2
Bernheiden, M.3
-
13
-
-
24644477427
-
Suppressor αβ T lymphocytes control innate resistance to endotoxic shock
-
Jones-Carson J, Fantuzzi G, Siegmund B, et al. Suppressor αβ T lymphocytes control innate resistance to endotoxic shock. J Infect Dis 2005;192:1039-46.
-
(2005)
J Infect Dis
, vol.192
, pp. 1039-1046
-
-
Jones-Carson, J.1
Fantuzzi, G.2
Siegmund, B.3
-
14
-
-
7044224867
-
Regulatory CD4+ T cells and the control of autoimmune disease
-
Wraith DC, Nicolson KS, Whitley NT. Regulatory CD4+ T cells and the control of autoimmune disease. Curr Opin Immunol 2004;16:695- 701.
-
(2004)
Curr Opin Immunol
, vol.16
, pp. 695-701
-
-
Wraith, D.C.1
Nicolson, K.S.2
Whitley, N.T.3
-
15
-
-
16844363097
-
A well adapted regulatory contrivance: Regulatory T cell development and the forkhead family transcription factor Foxp3
-
Fontenot JD, Rudensky AY. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 2005;6:331-7.
-
(2005)
Nat Immunol
, vol.6
, pp. 331-337
-
-
Fontenot, J.D.1
Rudensky, A.Y.2
-
16
-
-
0036301503
-
CTLA-4: New insights into its biological function and use in tumor immunotherapy
-
Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 2002;3:611-8.
-
(2002)
Nat Immunol
, vol.3
, pp. 611-618
-
-
Egen, J.G.1
Kuhns, M.S.2
Allison, J.P.3
-
18
-
-
11144230063
-
The CD28 family: A T-cell rheostat for therapeutic control of T-cell activation
-
Riley JL, June CH. The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood 2005;105:13-21.
-
(2005)
Blood
, vol.105
, pp. 13-21
-
-
Riley, J.L.1
June, C.H.2
-
19
-
-
15444378925
-
Preventing intolerance: The induction of nonresponsiveness to dietary and microbial antigens in the intestinal mucosa
-
Smith DW, Nagler-Anderson C. Preventing intolerance: the induction of nonresponsiveness to dietary and microbial antigens in the intestinal mucosa. J Immunol 2005;174:3851-7.
-
(2005)
J Immunol
, vol.174
, pp. 3851-3857
-
-
Smith, D.W.1
Nagler-Anderson, C.2
-
20
-
-
2942625911
-
Interactions between commensal intestinal bacteria and the immune system
-
Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nature Rev Immunol 2004;4:478-85.
-
(2004)
Nature Rev Immunol
, vol.4
, pp. 478-485
-
-
Macpherson, A.J.1
Harris, N.L.2
-
21
-
-
0034663766
-
Colitis induced by enteric bacterial antigen-specific CD4+ T cells requires CD40-CD40 ligand interactions for a sustained increase of mucosal IL-12
-
Cong Y, Weaver CT, Lazenby A, et al. Colitis induced by enteric bacterial antigen-specific CD4+ T cells requires CD40-CD40 ligand interactions for a sustained increase of mucosal IL-12. J Immunol 2000;165:2173-82.
-
(2000)
J Immunol
, vol.165
, pp. 2173-2182
-
-
Cong, Y.1
Weaver, C.T.2
Lazenby, A.3
-
22
-
-
1642335813
-
Demonstration of strong enterobacterial reactivity for CD4+CD25- T cells from conventional and germfree mice which is counter-regulated by CD4+CD25+ T cells
-
Gad M, Pedersen AE, Kristensen NN, et al. Demonstration of strong enterobacterial reactivity for CD4+CD25- T cells from conventional and germfree mice which is counter-regulated by CD4+CD25+ T cells. Eur J Immunol 2004;34:695-704.
-
(2004)
Eur J Immunol
, vol.34
, pp. 695-704
-
-
Gad, M.1
Pedersen, A.E.2
Kristensen, N.N.3
-
23
-
-
0027163182
-
CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice: Disease development is prevented by cotransfer of purified CD4+ T cells
-
Morrissey PJ, Charrier K, Braddy S, et al. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice: disease development is prevented by cotransfer of purified CD4+ T cells. J Exp Med 1993;178:237-44.
-
(1993)
J Exp Med
, vol.178
, pp. 237-244
-
-
Morrissey, P.J.1
Charrier, K.2
Braddy, S.3
-
24
-
-
0028179230
-
Regulatory interactions between CD45RBhigh and CD40RBlow CD4-T cells are important for the balance between protective and pathogenic cell-mediated immunity
-
Powrie F, Correa-Oliveira R, Mauze S, et al. Regulatory interactions between CD45RBhigh and CD40RBlow CD4-T cells are important for the balance between protective and pathogenic cell-mediated immunity. J Exp Med 1994;179:589-600.
-
(1994)
J Exp Med
, vol.179
, pp. 589-600
-
-
Powrie, F.1
Correa-Oliveira, R.2
Mauze, S.3
-
25
-
-
0035180067
-
Control of intestinal inflammation by regulatory T cells
-
Singh B, Read S, Asseman C, et al. Control of intestinal inflammation by regulatory T cells. Immunol Rev 2001;182:190-200.
-
(2001)
Immunol Rev
, vol.182
, pp. 190-200
-
-
Singh, B.1
Read, S.2
Asseman, C.3
-
26
-
-
0037450804
-
Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide
-
Caramalho I, Lopes-Carvalho T, Ostler D, et al. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med 2003;197:403-11.
-
(2003)
J Exp Med
, vol.197
, pp. 403-411
-
-
Caramalho, I.1
Lopes-Carvalho, T.2
Ostler, D.3
-
27
-
-
16644385124
-
Cecal ligation and puncture versus colon ascendens stent peritonitis: Two distinct animal models for polymicrobial sepsis
-
Maier S, Traeger T, Entleutner M, et al. Cecal ligation and puncture versus colon ascendens stent peritonitis: two distinct animal models for polymicrobial sepsis. Shock 2004;21(6):505-11.
-
(2004)
Shock
, vol.21
, Issue.6
, pp. 505-511
-
-
Maier, S.1
Traeger, T.2
Entleutner, M.3
-
28
-
-
0031924789
-
Essential role of gamma interferon in survival of colon ascencens stent peritonitis, a novel murine model of abdominal sepsis
-
Zantl N, Uebe A, Neumann B, et al. Essential role of gamma interferon in survival of colon ascencens stent peritonitis, a novel murine model of abdominal sepsis. Infect Immun 1998;66:2300-9.
-
(1998)
Infect Immun
, vol.66
, pp. 2300-2309
-
-
Zantl, N.1
Uebe, A.2
Neumann, B.3
-
29
-
-
29244444011
-
Impact of interleukin-12, oxidative burst, and iNOS on the survival of murine fecal peritonitis
-
Entleutner M, Traeger T, Westerholt A, et al. Impact of interleukin-12, oxidative burst, and iNOS on the survival of murine fecal peritonitis. Int J Colorectal Dis 2006;21:64-70.
-
(2006)
Int J Colorectal Dis
, vol.21
, pp. 64-70
-
-
Entleutner, M.1
Traeger, T.2
Westerholt, A.3
-
30
-
-
0035478590
-
Critical role of Kupffer cell-derived IL-10 for host defense in septic peritonitis
-
Emmanuilidis K, Weighardt H, Maier S, et al. Critical role of Kupffer cell-derived IL-10 for host defense in septic peritonitis. J Immunol 2001;167:3919-27.
-
(2001)
J Immunol
, vol.167
, pp. 3919-3927
-
-
Emmanuilidis, K.1
Weighardt, H.2
Maier, S.3
-
31
-
-
0038312126
-
Adoptive transfer of apoptotic splenocytes worsens survival, whereas adoptive transfer of necrotic splenocytes improves survival in sepsis
-
Hotchkiss RS, Chang KC, Grayson MH, et al. Adoptive transfer of apoptotic splenocytes worsens survival, whereas adoptive transfer of necrotic splenocytes improves survival in sepsis. Proc Natl Acad Sci USA 2003;100:6724-9.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 6724-6729
-
-
Hotchkiss, R.S.1
Chang, K.C.2
Grayson, M.H.3
-
32
-
-
0037103223
-
Thymocyte apoptosis induced by T cell activation is mediated by glucocorticoids in vivo
-
Brewer JA, Kanagawa O, Sleckman BP, et al. Thymocyte apoptosis induced by T cell activation is mediated by glucocorticoids in vivo. J Immunol 2002;169:1837-43.
-
(2002)
J Immunol
, vol.169
, pp. 1837-1843
-
-
Brewer, J.A.1
Kanagawa, O.2
Sleckman, B.P.3
-
33
-
-
31144467829
-
Glucocorticoids engage different signal transduction pathways to induce apoptosis in thymocytes and mature T cells
-
Wang D, Muller N, McPherson K, et al. Glucocorticoids engage different signal transduction pathways to induce apoptosis in thymocytes and mature T cells. J Immunol 2006;176:1695-702.
-
(2006)
J Immunol
, vol.176
, pp. 1695-1702
-
-
Wang, D.1
Muller, N.2
McPherson, K.3
-
34
-
-
0034141377
-
Decreased response to recall antigens is associated with depressed costimulatory receptor expression in septic critically ill patients
-
Manjuck J, Saha DC, Astiz M, et al. Decreased response to recall antigens is associated with depressed costimulatory receptor expression in septic critically ill patients. J Lab Clin Med 2000;135:153-60.
-
(2000)
J Lab Clin Med
, vol.135
, pp. 153-160
-
-
Manjuck, J.1
Saha, D.C.2
Astiz, M.3
-
35
-
-
8544236263
-
Increased percentage of CD4+CD25+ regulatory T cells during septic shock is due to the decrease of CD4+CD25- lymphocytes
-
Venet F, Pachot A, Debard AL, et al. Increased percentage of CD4+CD25+ regulatory T cells during septic shock is due to the decrease of CD4+CD25- lymphocytes. Crit Care Med 2004;32:2329-31.
-
(2004)
Crit Care Med
, vol.32
, pp. 2329-2331
-
-
Venet, F.1
Pachot, A.2
Debard, A.L.3
-
36
-
-
1642305625
-
CD152 (CTLA-4) determines the unequal resistance of Th1 and Th2 cells against activation-induced cell death by a mechanism requiring PI3 kinase function
-
Pandiyan P, Gartner D, Soezeri O, et al. CD152 (CTLA-4) determines the unequal resistance of Th1 and Th2 cells against activation-induced cell death by a mechanism requiring PI3 kinase function. J Exp Med 2004;199:831-42.
-
(2004)
J Exp Med
, vol.199
, pp. 831-842
-
-
Pandiyan, P.1
Gartner, D.2
Soezeri, O.3
-
37
-
-
1642308173
-
Differential response of murine CD4+CD25+ and CD4+CD25- T cells to dexamethasone-induced cell death
-
Chen X, Murakami T, Oppenheim JJ, et al. Differential response of murine CD4+CD25+ and CD4+CD25- T cells to dexamethasone-induced cell death. Eur J Immunol 2004;34:859-69.
-
(2004)
Eur J Immunol
, vol.34
, pp. 859-869
-
-
Chen, X.1
Murakami, T.2
Oppenheim, J.J.3
-
38
-
-
0034220526
-
CD4+ αβ-T lymphocytes express high levels of the T lymphocyte antigen CTLA-4 (CD152) in acute malaria
-
Schlotmann T, Waase I, Jülch C, et al. CD4+ αβ-T lymphocytes express high levels of the T lymphocyte antigen CTLA-4 (CD152) in acute malaria. J Infect Dis 2000;182:367-70.
-
(2000)
J Infect Dis
, vol.182
, pp. 367-370
-
-
Schlotmann, T.1
Waase, I.2
Jülch, C.3
-
39
-
-
0037108521
-
Neutrophil influx in response to a peritoneal infection with Salmonella is delayed in lipopolysaccharide-binding protein or CD14-deficient mice
-
Yang KK, Dorner BG, Merkel U, et al. Neutrophil influx in response to a peritoneal infection with Salmonella is delayed in lipopolysaccharide-binding protein or CD14-deficient mice. J Immunol 2002;169:4475-80.
-
(2002)
J Immunol
, vol.169
, pp. 4475-4480
-
-
Yang, K.K.1
Dorner, B.G.2
Merkel, U.3
-
40
-
-
0037121945
-
Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses
-
Kursar M, Bonhagen K, Fensterle J, et al. Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses. J Exp Med 2002;196:1585-92.
-
(2002)
J Exp Med
, vol.196
, pp. 1585-1592
-
-
Kursar, M.1
Bonhagen, K.2
Fensterle, J.3
-
41
-
-
0036883901
-
Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora
-
Cong Y, Weaver CT, Lazenby A, et al. Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora. J Immunol 2002;169:6112-9.
-
(2002)
J Immunol
, vol.169
, pp. 6112-6119
-
-
Cong, Y.1
Weaver, C.T.2
Lazenby, A.3
-
42
-
-
20444457491
-
CD4+CD25+ T cells regulate colonic localization of CD4 T cells reactive to microbial antigen
-
Watanabe T, Yamori M, Kita T, et al. CD4+CD25+ T cells regulate colonic localization of CD4 T cells reactive to microbial antigen. Inflamm Bowel Dis 2005;11:541-50.
-
(2005)
Inflamm Bowel Dis
, vol.11
, pp. 541-550
-
-
Watanabe, T.1
Yamori, M.2
Kita, T.3
-
43
-
-
0032828346
-
Dexamethasone enhances CTLA-4 expression during T cell activation
-
Xia M, Gasser J, Feige U. Dexamethasone enhances CTLA-4 expression during T cell activation. Cell Mol Life Sci 1999;55:1649-56.
-
(1999)
Cell Mol Life Sci
, vol.55
, pp. 1649-1656
-
-
Xia, M.1
Gasser, J.2
Feige, U.3
-
44
-
-
0032536862
-
Superantigens: Just like peptides, only different
-
Proft T, Fraser J. Superantigens: just like peptides, only different. J Exp Med 1998;187:819-21.
-
(1998)
J Exp Med
, vol.187
, pp. 819-821
-
-
Proft, T.1
Fraser, J.2
-
45
-
-
0037243827
-
CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms
-
Maloy KJ, Salaun L, Cahill R, et al. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med 2003;197:111-9.
-
(2003)
J Exp Med
, vol.197
, pp. 111-119
-
-
Maloy, K.J.1
Salaun, L.2
Cahill, R.3
-
46
-
-
34248572345
-
Th-17 cells in the circle of immunity and autoimmunity
-
Bettelli E, Oukka M, Kuchroo V. Th-17 cells in the circle of immunity and autoimmunity. Nat Immunol 2007;8:345-50.
-
(2007)
Nat Immunol
, vol.8
, pp. 345-350
-
-
Bettelli, E.1
Oukka, M.2
Kuchroo, V.3
|