-
3
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121-167.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
4
-
-
0000732463
-
A limited memory algorithm for bound constrained optimization
-
Byrd, R. H., Lu, P., & Nocedal, J. (1995). A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific and Statistical Computing, 16(5), 1190-1208.
-
(1995)
SIAM Journal on Scientific and Statistical Computing
, vol.16
, Issue.5
, pp. 1190-1208
-
-
Byrd, R.H.1
Lu, P.2
Nocedal, J.3
-
5
-
-
4243137056
-
Hybrid Monte Carlo
-
Duane, S., Kennedy, A. D., & Pendleton, B. J. (1987). Hybrid Monte Carlo. Physics Letters B, 195(2), 216-222.
-
(1987)
Physics Letters B
, vol.195
, Issue.2
, pp. 216-222
-
-
Duane, S.1
Kennedy, A.D.2
Pendleton, B.J.3
-
7
-
-
0003798631
-
-
A.I. Memo 1654. Cambridge, MA: Massachusetts Institute of Technology
-
Evgeniou, T., Pontil, M., & Poggio, T. (1999). A unified framework for regularization networks and support vector machines (A.I. Memo 1654). Cambridge, MA: Massachusetts Institute of Technology.
-
(1999)
A Unified Framework for Regularization Networks and Support Vector Machines
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
9
-
-
15944426317
-
A fast dual algorithm for kernel logistic regression
-
Keerthi, S. S., Duan, K., Shevade, S. K., & Poo, A. N. (2002). A fast dual algorithm for kernel logistic regression. Proceedings of the 19th International Conference on Machine Learning, 82-95.
-
(2002)
Proceedings of the 19th International Conference on Machine Learning
, pp. 82-95
-
-
Keerthi, S.S.1
Duan, K.2
Shevade, S.K.3
Poo, A.N.4
-
10
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (2001). Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation, 13, 637-649.
-
(2001)
Neural Computation
, vol.13
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
11
-
-
0034271876
-
The evidence framework applied to support vector machines
-
Kwok, J. T. (2000). The evidence framework applied to support vector machines. IEEE Transactions on Neural Networks, 11(5), 1162-1173.
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, Issue.5
, pp. 1162-1173
-
-
Kwok, J.T.1
-
12
-
-
0037876458
-
Ergodic, primal convergence in dual subgradient schemes for convex programming
-
Larsson, T., Patriksson, M., & Strömberg, A: (1999). Ergodic, primal convergence in dual subgradient schemes for convex programming. Math. Program, 86, 283-312.
-
(1999)
Math. Program
, vol.86
, pp. 283-312
-
-
Larsson, T.1
Patriksson, M.2
Strömberg, A.3
-
13
-
-
0002704818
-
A practical Bayesian framework for back propagation networks
-
MacKay, D. J. C. (1992). A practical Bayesian framework for back propagation networks. Neural Computation, 4(3), 448-472.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 448-472
-
-
MacKay, D.J.C.1
-
14
-
-
0000335983
-
Bayesian methods for backpropagation networks
-
MacKay, D. J. C. (1994). Bayesian methods for backpropagation networks. Models of Neural Networks, 3, 211-254.
-
(1994)
Models of Neural Networks
, vol.3
, pp. 211-254
-
-
MacKay, D.J.C.1
-
16
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.). Cambridge, MA: MIT Press
-
Platt, J. C. (1999). Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, & A. J. Smola (Eds.), Advances in kernel methods-Support vector learning (pp. 185-208). Cambridge, MA: MIT Press.
-
(1999)
Advances in Kernel Methods-support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
17
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, & D. Schuurnabs (Eds.). Cambridge, MA: MIT Press
-
Platt, J. C. (2000). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In A. J. Smola, P. L. Bartlett, B. Schölkopf, & D. Schuurnabs (Eds.), Advances in large margin classifier (pp. 61-73). Cambridge, MA: MIT Press.
-
(2000)
Advances in Large Margin Classifier
, pp. 61-73
-
-
Platt, J.C.1
-
18
-
-
0342502195
-
Soft margins for AdaBoost
-
Rätsch, G., Onoda, T., & Müller, K.-R. (2001). Soft margins for AdaBoost. Machine Learning, 42(3), 287-320.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.-R.3
-
19
-
-
0036163572
-
Bayesian methods for support vector machines: Evidence and predictive class probabilities
-
Sollich, P. (2002). Bayesian methods for support vector machines: Evidence and predictive class probabilities. Machine Learning, 46, 21-52.
-
(2002)
Machine Learning
, vol.46
, pp. 21-52
-
-
Sollich, P.1
-
23
-
-
0032289422
-
Bayesian classification with gaussian processes
-
Williams, C. K. I., & Barber, D. (1998). Bayesian classification with gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (12), 1342-1351.
-
(1998)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.20
, Issue.12
, pp. 1342-1351
-
-
Williams, C.K.I.1
Barber, D.2
|