-
2
-
-
49949144765
-
The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
-
L.M. Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Physics, 7:200-217, 1967.
-
(1967)
USSR Computational Mathematics and Physics
, vol.7
, pp. 200-217
-
-
Bregman, L.M.1
-
3
-
-
0031624445
-
Large margin classification using the perceptron algorithm
-
ACM
-
Y. Freund and R. Schapire. Large margin classification using the perceptron algorithm. In 11th COLT, pp. 209-217, ACM, 1998.
-
(1998)
11th COLT
, pp. 209-217
-
-
Freund, Y.1
Schapire, R.2
-
4
-
-
0030661191
-
General convergence results for linear discriminant updates
-
ACM
-
A. J. Grove, N. Littlestone, and D. Schuurmans. General convergence results for linear discriminant updates. In 10th COLT, pp. 171-183. ACM, 1997.
-
(1997)
10th COLT
, pp. 171-183
-
-
Grove, A.J.1
Littlestone, N.2
Schuurmans, D.3
-
5
-
-
0346641007
-
Worst-case loss bounds for sigmoided linear neurons
-
MIT Press, 1995
-
D. P. Helmbold, J. Kivinen, and M. K. Warmuth. Worst-case loss bounds for sigmoided linear neurons. In NIPS 1995, pp. 309-315. MIT Press, 1995.
-
(1995)
NIPS
, pp. 309-315
-
-
Helmbold, D.P.1
Kivinen, J.2
Warmuth, M.K.3
-
6
-
-
0008815681
-
Additive versus exponentiated gradient updates for linear prediction
-
J. Kivinen and M. K. Warmuth. Additive versus exponentiated gradient updates for linear prediction. Inform, and Comput., 132(1): 1-64, 1997.
-
(1997)
Inform, and Comput.
, vol.132
, Issue.1
, pp. 1-64
-
-
Kivinen, J.1
Warmuth, M.K.2
-
7
-
-
0008969040
-
Relative loss bounds for multidimensional regression problems
-
MIT Press
-
J. Kivinen and M. K. Warmuth. Relative loss bounds for multidimensional regression problems. In NIPS 10, pp. 287-293. MIT Press, 1998.
-
(1998)
NIPS
, vol.10
, pp. 287-293
-
-
Kivinen, J.1
Warmuth, M.K.2
-
8
-
-
0031375503
-
The perceptron algorithm vs. Winnow: Linear vs. Logarithmic mistake bounds when few input variables are relevant
-
J. Kivinen, M. K. Warmuth, and P. Auer. The perceptron algorithm vs. winnow: linear vs. logarithmic mistake bounds when few input variables are relevant. Artificial Intelligence, 97:325-343, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 325-343
-
-
Kivinen, J.1
Warmuth, M.K.2
Auer, P.3
-
9
-
-
34250091945
-
Learning when irrelevant attributes abound: A new linear-threshold algorithm
-
N. Littlestone. Learning when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285-318, 1988.
-
(1988)
Machine Learning
, vol.2
, pp. 285-318
-
-
Littlestone, N.1
-
11
-
-
0000511449
-
Redundant noisy attributes, attribute errors, and linear threshold learning using winnow
-
Morgan Kaufmann
-
N. Littlestone. Redundant noisy attributes, attribute errors, and linear threshold learning using Winnow. In 4th COLT, pp. 147-156, Morgan Kaufmann, 1991.
-
(1991)
4th COLT
, pp. 147-156
-
-
Littlestone, N.1
|