메뉴 건너뛰기




Volumn 24, Issue 2, 2007, Pages 155-181

Bayesian regularization for normal mixture estimation and model-based clustering

Author keywords

BIC; Conjugate prior; EM algorithm; Mixture models; Model based clustering; Posterior mode

Indexed keywords


EID: 36849029089     PISSN: 01764268     EISSN: 14321343     Source Type: Journal    
DOI: 10.1007/s00357-007-0004-5     Document Type: Article
Times cited : (309)

References (57)
  • 1
    • 0027453616 scopus 로고
    • Model-based Gaussian and Non-Gaussian Clustering
    • BANFIELD, J.D. and RAFTERY, A.E. (1993), "Model-based Gaussian and Non-Gaussian Clustering", Biometrics 49, 803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • BANFIELD, J.D.1    RAFTERY, A.E.2
  • 3
    • 0030326891 scopus 로고    scopus 로고
    • Regularized. Gaussian Discriminant Analysis Through Eigenvalue Decomposition
    • BENSMAIL, H., and CELEUX, G. (1996), "Regularized. Gaussian Discriminant Analysis Through Eigenvalue Decomposition", Journal of the American Statistical Association 91, 1743-1748.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 1743-1748
    • BENSMAIL, H.1    CELEUX, G.2
  • 5
    • 19544367642 scopus 로고    scopus 로고
    • A Novel Approach to Clustering Proteomics Data Using Bayesian Fast Fourier Transform
    • BENSMAIL, H., GOLEK, J., MOODY, M.M., SEMMES, J.O., and HAOUDI, A. (2005), "A Novel Approach to Clustering Proteomics Data Using Bayesian Fast Fourier Transform", Bioinformatics 21, 2210-2224.
    • (2005) Bioinformatics , vol.21 , pp. 2210-2224
    • BENSMAIL, H.1    GOLEK, J.2    MOODY, M.M.3    SEMMES, J.O.4    HAOUDI, A.5
  • 6
    • 0037899007 scopus 로고    scopus 로고
    • Model-based Clustering with Noise: Bayesian Inference and Estimation
    • BENSMAIL, H., and MEULMAN, J.J. (2003), "Model-based Clustering with Noise: Bayesian Inference and Estimation", Journal of Classification 20, 49-76.
    • (2003) Journal of Classification , vol.20 , pp. 49-76
    • BENSMAIL, H.1    MEULMAN, J.J.2
  • 7
    • 0000675167 scopus 로고    scopus 로고
    • Structure Discovery in Conditional Probability Models via an Entropic Prior and Parameter Extinction
    • BRAND, M. (1999), "Structure Discovery in Conditional Probability Models via an Entropic Prior and Parameter Extinction", Neural Computation 11, 1155-1182.
    • (1999) Neural Computation , vol.11 , pp. 1155-1182
    • BRAND, M.1
  • 10
    • 0029305528 scopus 로고
    • Gaussian Parsimonious Clustering Models
    • CELEUX, G., and GOVAERT, G. (1995), "Gaussian Parsimonious Clustering Models", Pattern Recognition 28, 781-793.
    • (1995) Pattern Recognition , vol.28 , pp. 781-793
    • CELEUX, G.1    GOVAERT, G.2
  • 11
    • 0037703133 scopus 로고
    • Une Histoire de Discrétisation (avec Commentaires)
    • CELEUX, G., and ROBERT, C.P. (1993), "Une Histoire de Discrétisation (avec Commentaires)", La Revue de Modulad 11, 7-44.
    • (1993) La Revue de Modulad , vol.11 , pp. 7-44
    • CELEUX, G.1    ROBERT, C.P.2
  • 12
    • 84950964832 scopus 로고
    • An Application of the Laplace Method, to Finite Mixture Distributions
    • CRAWFORD, S.L. (1994), "An Application of the Laplace Method, to Finite Mixture Distributions", Journal of the American Statistical Association 89, 259-267.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 259-267
    • CRAWFORD, S.L.1
  • 13
    • 84952154195 scopus 로고
    • Modeling Lake Chemistry Distributions: Approximate Bayesian Methods for Estimating a Finite Mixture Model
    • CRAWFORD, S.L., DEGROOT, M.H., KADANE, J.B., and SMALL, M.J. (1992), "Modeling Lake Chemistry Distributions: Approximate Bayesian Methods for Estimating a Finite Mixture Model", Technometrics 34, 441-453.
    • (1992) Technometrics , vol.34 , pp. 441-453
    • CRAWFORD, S.L.1    DEGROOT, M.H.2    KADANE, J.B.3    SMALL, M.J.4
  • 14
    • 0032337237 scopus 로고    scopus 로고
    • Detecting Features in Spatial Point Processes with Clutter via Model-based Clustering
    • DASGUPTA, A., and RAFTERY, A.E. (1998), "Detecting Features in Spatial Point Processes with Clutter via Model-based Clustering", Journal of the American Statistical Association 93, 294-302.
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 294-302
    • DASGUPTA, A.1    RAFTERY, A.E.2
  • 15
    • 0039988131 scopus 로고    scopus 로고
    • Bayesian Classification of Neolithic Tools
    • DELLAPORTAS, P. (1998), "Bayesian Classification of Neolithic Tools", Applied Statistics 47, 279-297.
    • (1998) Applied Statistics , vol.47 , pp. 279-297
    • DELLAPORTAS, P.1
  • 20
    • 0032131702 scopus 로고    scopus 로고
    • Algorithms for Model-based Gaussian Hierarchical Clustering
    • FRALEY, C. (1998), "Algorithms for Model-based Gaussian Hierarchical Clustering", SIAM Journal on Scientific Computing 20, 270-281.
    • (1998) SIAM Journal on Scientific Computing , vol.20 , pp. 270-281
    • FRALEY, C.1
  • 21
    • 0032269108 scopus 로고    scopus 로고
    • How Many Clusters? Which Clustering Method? - Answers via Model-based Cluster Analysis
    • FRALEY, C., and RAFTERY, A.E. (1998), "How Many Clusters? Which Clustering Method? - Answers via Model-based Cluster Analysis. The Computer Journal 41, 578-588.
    • (1998) The Computer Journal , vol.41 , pp. 578-588
    • FRALEY, C.1    RAFTERY, A.E.2
  • 22
    • 22844453564 scopus 로고    scopus 로고
    • MCLUST: Software for Model-based Cluster Analysis
    • FRALEY, C., and RAFTERY, A.E. (1999), "MCLUST: Software for Model-based Cluster Analysis", Journal of Classification 16, 297-306.
    • (1999) Journal of Classification , vol.16 , pp. 297-306
    • FRALEY, C.1    RAFTERY, A.E.2
  • 23
  • 24
    • 0742306126 scopus 로고    scopus 로고
    • Enhanced. Software for Model-based Clustering, Density Estimation, and Discriminant Analysis: MCLUST
    • FRALEY, C., and RAFTERY, A.E. (2003), "Enhanced. Software for Model-based Clustering, Density Estimation, and Discriminant Analysis: MCLUST", Journal of Classification 20, 263-286.
    • (2003) Journal of Classification , vol.20 , pp. 263-286
    • FRALEY, C.1    RAFTERY, A.E.2
  • 25
    • 33645279316 scopus 로고    scopus 로고
    • Bayesian Regularization for Normal Mixture Estimation and Model-based Clustering
    • August, Technical Report 486, University of Washington, Department of Statistics
    • FRALEY, C., and RAFTERY, A.E. (2005, August), "Bayesian Regularization for Normal Mixture Estimation and Model-based Clustering", Technical Report 486, University of Washington, Department of Statistics.
    • (2005)
    • FRALEY, C.1    RAFTERY, A.E.2
  • 26
    • 34547913193 scopus 로고    scopus 로고
    • MCLUST Version 3 for R: Normal Mixture Modeling and Model-based Clustering
    • September, Technical Report 504, University of Washington, Department of Statistics
    • FRALEY, C., and RAFTERY, A.E. (2006, September), "MCLUST Version 3 for R: Normal Mixture Modeling and Model-based Clustering", Technical Report 504, University of Washington, Department of Statistics.
    • (2006)
    • FRALEY, C.1    RAFTERY, A.E.2
  • 29
    • 0003744820 scopus 로고    scopus 로고
    • The EM Algorithm, for Mixtures of Factor Analyzers
    • Technical Report CRG-TR-96-1, Toronto: University of Toronto, Department of Computer Science revised
    • GHAHRAMANI, Z., and HINTON, G.E. (1997), "The EM Algorithm, for Mixtures of Factor Analyzers", Technical Report CRG-TR-96-1, Toronto: University of Toronto, Department of Computer Science (revised).
    • (1997)
    • GHAHRAMANI, Z.1    HINTON, G.E.2
  • 30
    • 84988091828 scopus 로고
    • A Bayesian Method for Classification and Discrimination
    • LAVINE, M., and WEST, M. (1992), "A Bayesian Method for Classification and Discrimination", Canadian Journal of Statistics 20, 451-461.
    • (1992) Canadian Journal of Statistics , vol.20 , pp. 451-461
    • LAVINE, M.1    WEST, M.2
  • 31
    • 36849087008 scopus 로고    scopus 로고
    • MACQQUEEN, J. (1967), Some Methods for Classification and Analysis of Multivariate Observations, in Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Eds. L.M.L. Cam and. J. Neyman, University of California Press, 1, pp. 281-297.
    • MACQQUEEN, J. (1967), "Some Methods for Classification and Analysis of Multivariate Observations", in Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Eds. L.M.L. Cam and. J. Neyman, University of California Press, Volume 1, pp. 281-297.
  • 34
    • 84947788012 scopus 로고    scopus 로고
    • Robust Cluster Analysis via Mixtures of Multivariate t-distributions
    • Eds. A. Amin, D. Dori, P. Pudil, and H. Freeman, Springer
    • MCLACHLAN, G.J. and PEEL, D. (1998), "Robust Cluster Analysis via Mixtures of Multivariate t-distributions", in Lecture Notes in Computer Science, Eds. A. Amin, D. Dori, P. Pudil, and H. Freeman, Springer, Volume 1451, pp. 658-666.
    • (1998) Lecture Notes in Computer Science , vol.1451 , pp. 658-666
    • MCLACHLAN, G.J.1    PEEL, D.2
  • 36
    • 0001883037 scopus 로고    scopus 로고
    • The EMMIX Software for the Fitting of Mixtures of Normal i-components
    • on-line publication
    • MCLACHLAN, G.J., PEEL, D., BASFORD, K.E., and ADAMS, P. (1999), "The EMMIX Software for the Fitting of Mixtures of Normal i-components", Journal of Statistical Software 4 (on-line publication www.jstatsoft.org).
    • (1999) Journal of Statistical Software , vol.4
    • MCLACHLAN, G.J.1    PEEL, D.2    BASFORD, K.E.3    ADAMS, P.4
  • 38
    • 1842630345 scopus 로고    scopus 로고
    • Regularization of the Location Model in Discrimination with Mixed Discrete and Continuous Variables
    • MERBOUHA, A., and MKHADRI, A. (2001), "Regularization of the Location Model in Discrimination with Mixed Discrete and Continuous Variables", Computational Statistics and Data Analysis 45, 563-576.
    • (2001) Computational Statistics and Data Analysis , vol.45 , pp. 563-576
    • MERBOUHA, A.1    MKHADRI, A.2
  • 41
    • 0035375137 scopus 로고    scopus 로고
    • Computational Analysis of Microarray Data
    • QUACKENBUSH, J. (2001), "Computational Analysis of Microarray Data", Nature Reviews Genetics 2, 418-427.
    • (2001) Nature Reviews Genetics , vol.2 , pp. 418-427
    • QUACKENBUSH, J.1
  • 43
    • 0021404166 scopus 로고
    • Mixture Densities, Maximum Likelihood and the EM Algorithm
    • REDNER, R.A., and WALKER, H.F. (1984), "Mixture Densities, Maximum Likelihood and the EM Algorithm", SIAMReview 26, 195-239.
    • (1984) SIAMReview , vol.26 , pp. 195-239
    • REDNER, R.A.1    WALKER, H.F.2
  • 46
    • 0000795635 scopus 로고
    • Density Estimation with Confidence Sets Exemplified by Superclusters and Voids in the Galaxies
    • ROEDER, K. (1990), "Density Estimation with Confidence Sets Exemplified by Superclusters and Voids in the Galaxies", Journal of the American Statistical Association 85, 617-624.
    • (1990) Journal of the American Statistical Association , vol.85 , pp. 617-624
    • ROEDER, K.1
  • 50
    • 0000120766 scopus 로고
    • Estimating the Dimension of a Model
    • SCHWARZ, G. (1978), "Estimating the Dimension of a Model", The Annals of Statistics 6, 461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • SCHWARZ, G.1
  • 52
    • 0036970726 scopus 로고    scopus 로고
    • Nearest Neighbor Variance Estimation (NNVE): Robust Covarince Estimation via Nearest Neighbor Cleaning (with Discussion)
    • WANG, N., and RAFTERY, A.E. (2002), "Nearest Neighbor Variance Estimation (NNVE): Robust Covarince Estimation via Nearest Neighbor Cleaning (with Discussion)", Journal of the American Statistical Association 97, 994-1019.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 994-1019
    • WANG, N.1    RAFTERY, A.E.2
  • 53
    • 84944178665 scopus 로고
    • Hierarchical Groupings to Optimize an Objective Function
    • WARD, J.H. (1963), "Hierarchical Groupings to Optimize an Objective Function", Journal of the American Statistical Association 58, 234-244.
    • (1963) Journal of the American Statistical Association , vol.58 , pp. 234-244
    • WARD, J.H.1
  • 54
    • 21644476820 scopus 로고    scopus 로고
    • Model-based Clustering for Image Segmentation and Large Datasets via Sampling
    • WEHRENS, R., BUYDENS, L., FRALEY, C., and RAFTERY, A.E. (2004), "Model-based Clustering for Image Segmentation and Large Datasets via Sampling", Journal of Classification 21, 231-253.
    • (2004) Journal of Classification , vol.21 , pp. 231-253
    • WEHRENS, R.1    BUYDENS, L.2    FRALEY, C.3    RAFTERY, A.E.4
  • 55
    • 0036080078 scopus 로고    scopus 로고
    • Mixture- modeling of Medical Magnetic Resonance Data
    • WEHRENS, R., SIMONETTI, A., and BUYDENS, L. (2002), "Mixture- modeling of Medical Magnetic Resonance Data", Journal of Chemometrics 16, 1-10.
    • (2002) Journal of Chemometrics , vol.16 , pp. 1-10
    • WEHRENS, R.1    SIMONETTI, A.2    BUYDENS, L.3
  • 56
    • 0034782618 scopus 로고    scopus 로고
    • Model-based Clustering and Data Transformation for Gene Expression Data
    • YEUNG, K.Y., FRALEY, C., MURUA, A., RAFTERY, A.E., and RUZZO, W.L. (2001), "Model-based Clustering and Data Transformation for Gene Expression Data", Bioinformatics 17, 977-987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • YEUNG, K.Y.1    FRALEY, C.2    MURUA, A.3    RAFTERY, A.E.4    RUZZO, W.L.5
  • 57
    • 4444233747 scopus 로고    scopus 로고
    • Learning a Multivariate Gaussian Mixture Model with the Reversible Jump MCMC Algorithm
    • ZHANG, Z., CHAN, K.L., WU, Y., and CHEN, C. (2004), "Learning a Multivariate Gaussian Mixture Model with the Reversible Jump MCMC Algorithm", Statistics and Computing 14, 343-355.
    • (2004) Statistics and Computing , vol.14 , pp. 343-355
    • ZHANG, Z.1    CHAN, K.L.2    WU, Y.3    CHEN, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.