-
1
-
-
1842580567
-
Hepatic steatosis: A mediator of the metabolic syndrome. Lessons from animal models
-
den Boer M, Voshol PJ, Kuipers F, Havekes LM, Romijn JA. Hepatic steatosis: a mediator of the metabolic syndrome. Lessons from animal models. Arterioscler Thromb Vasc Biol. 2004;24:644-649.
-
(2004)
Arterioscler Thromb Vasc Biol
, vol.24
, pp. 644-649
-
-
den Boer, M.1
Voshol, P.J.2
Kuipers, F.3
Havekes, L.M.4
Romijn, J.A.5
-
2
-
-
33644827082
-
Overproduction of large VLDL particles is driven by increased liver fat content in man
-
Adiels M, Taskinen M-R, Packard C, Caslake MJ, Soro-Paavonen A, Westerbacka J, Vehkavaara S, Häkkinen A, Olofsson SO, Yki-Järvinen H, Borén J. Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia. 2006;49:755-765.
-
(2006)
Diabetologia
, vol.49
, pp. 755-765
-
-
Adiels, M.1
Taskinen, M.-R.2
Packard, C.3
Caslake, M.J.4
Soro-Paavonen, A.5
Westerbacka, J.6
Vehkavaara, S.7
Häkkinen, A.8
Olofsson, S.O.9
Yki-Järvinen, H.10
Borén, J.11
-
3
-
-
0027322479
-
Stable isotopes show a direct relation between VLDL apoB overproduction and serum triglyceride levels and indicate a metabolically and biochemically coherent basis for familial combined hyperlipidemia
-
Venkatesan S, Cullen P, Pacy P, Halliday D, Scott J. Stable isotopes show a direct relation between VLDL apoB overproduction and serum triglyceride levels and indicate a metabolically and biochemically coherent basis for familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 1993;13:1110-1118.
-
(1993)
Arterioscler Thromb Vasc Biol
, vol.13
, pp. 1110-1118
-
-
Venkatesan, S.1
Cullen, P.2
Pacy, P.3
Halliday, D.4
Scott, J.5
-
4
-
-
0035431018
-
Nonalcoholic fatty liver disease: A feature of the metabolic syndrome
-
Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, McCullough AJ, Natale S, Forlani G, Melchionda N. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50:1844-1850.
-
(2001)
Diabetes
, vol.50
, pp. 1844-1850
-
-
Marchesini, G.1
Brizi, M.2
Bianchi, G.3
Tomassetti, S.4
Bugianesi, E.5
Lenzi, M.6
McCullough, A.J.7
Natale, S.8
Forlani, G.9
Melchionda, N.10
-
5
-
-
85183081736
-
-
Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasziou P, Drury P, Kesaniemi YA, Sullivan D, Hunt D, Colman P, d'Emden M, Whiting M, Ehnholm C, Laakso M, investigators Fs. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849-1861.
-
Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasziou P, Drury P, Kesaniemi YA, Sullivan D, Hunt D, Colman P, d'Emden M, Whiting M, Ehnholm C, Laakso M, investigators Fs. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849-1861.
-
-
-
-
6
-
-
23644456172
-
Therapeutic roles of peroxisome proliferator-activated receptor agonists
-
Staels B, Fruchart J-C. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes. 2005;54:2460-2470.
-
(2005)
Diabetes
, vol.54
, pp. 2460-2470
-
-
Staels, B.1
Fruchart, J.-C.2
-
7
-
-
33644652183
-
Sorting out the roles of PPARα in energy metabolism and vascular homeostasis
-
Lefebvre P, Chinetti G, Fruchart JC, Staels B. Sorting out the roles of PPARα in energy metabolism and vascular homeostasis. J Clin Invest. 2006;116:571-580.
-
(2006)
J Clin Invest
, vol.116
, pp. 571-580
-
-
Lefebvre, P.1
Chinetti, G.2
Fruchart, J.C.3
Staels, B.4
-
8
-
-
0037151095
-
Influence of peroxisome proliferator-activated receptor α agonists on the intracellular turnover and secretion of apolipoprotein (Apo) B-100 and ApoB-48
-
Lindén D, Lindberg K, Oscarsson J, Claesson C, Asp L, Li L, Gustafsson M, Borén J, Olofsson SO. Influence of peroxisome proliferator-activated receptor α agonists on the intracellular turnover and secretion of apolipoprotein (Apo) B-100 and ApoB-48. J Biol Chem. 2002;277:23044-23053.
-
(2002)
J Biol Chem
, vol.277
, pp. 23044-23053
-
-
Lindén, D.1
Lindberg, K.2
Oscarsson, J.3
Claesson, C.4
Asp, L.5
Li, L.6
Gustafsson, M.7
Borén, J.8
Olofsson, S.O.9
-
9
-
-
33244494398
-
PPARα activation increases triglyceride mass and adipose differentiation-related protein in hepatocytes
-
Edvardsson U, Ljungberg A, Lindén D, William-Olsson L, Peilot-Sjögren H, Ahnmark A, Oscarsson J. PPARα activation increases triglyceride mass and adipose differentiation-related protein in hepatocytes. J Lipid Res. 2006;47:329-340.
-
(2006)
J Lipid Res
, vol.47
, pp. 329-340
-
-
Edvardsson, U.1
Ljungberg, A.2
Lindén, D.3
William-Olsson, L.4
Peilot-Sjögren, H.5
Ahnmark, A.6
Oscarsson, J.7
-
10
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92:829-839.
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
Wu, Z.2
Park, C.W.3
Graves, R.4
Wright, M.5
Spiegelman, B.M.6
-
11
-
-
0038105760
-
Cloning and mRNA tissue distribution of human PPARgamma coactivator-1
-
Larrouy D, Vidal H, Andreelli F, Laville M, Langin D. Cloning and mRNA tissue distribution of human PPARgamma coactivator-1. Intern J Obes Relat Metab Disord. 1999;23:1327-1332.
-
(1999)
Intern J Obes Relat Metab Disord
, vol.23
, pp. 1327-1332
-
-
Larrouy, D.1
Vidal, H.2
Andreelli, F.3
Laville, M.4
Langin, D.5
-
12
-
-
0037127204
-
Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor
-
Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem. 2002;277:1645-1648.
-
(2002)
J Biol Chem
, vol.277
, pp. 1645-1648
-
-
Lin, J.1
Puigserver, P.2
Donovan, J.3
Tarr, P.4
Spiegelman, B.M.5
-
13
-
-
0038682372
-
Characterization of the human, mouse and rat PGC1β (peroxisome-proliferator-activated receptor-γ co-activator 1β) gene in vitro and in vivo
-
Meirhaeghe A, Crowley V, Lenaghan C, Lelliott C, Green K, Stewart A, Hart K, Schinner S, Sethi JK, Yeo G, Brand MD, Cortright RN, O'Rahilly S, Montague C, Vidal-Puig AJ. Characterization of the human, mouse and rat PGC1β (peroxisome-proliferator-activated receptor-γ co-activator 1β) gene in vitro and in vivo. Biochem J. 2003;373:155-165.
-
(2003)
Biochem J
, vol.373
, pp. 155-165
-
-
Meirhaeghe, A.1
Crowley, V.2
Lenaghan, C.3
Lelliott, C.4
Green, K.5
Stewart, A.6
Hart, K.7
Schinner, S.8
Sethi, J.K.9
Yeo, G.10
Brand, M.D.11
Cortright, R.N.12
O'Rahilly, S.13
Montague, C.14
Vidal-Puig, A.J.15
-
14
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115-124.
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Andersson, U.3
Zhang, C.4
Adelmant, G.5
Mootha, V.6
Troy, A.7
Cinti, S.8
Lowell, B.9
Scarpulla, R.C.10
Spiegelman, B.M.11
-
15
-
-
0038036024
-
Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells
-
St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB, Spiegelman BM. Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells. J Biol Chem. 2003;278:26597-26603.
-
(2003)
J Biol Chem
, vol.278
, pp. 26597-26603
-
-
St-Pierre, J.1
Lin, J.2
Krauss, S.3
Tarr, P.T.4
Yang, R.5
Newgard, C.B.6
Spiegelman, B.M.7
-
16
-
-
0042232315
-
PGC-1β in the regulation of hepatic glucose and energy metabolism
-
Lin J, Tarr PT, Yang R, Rhee J, Puigserver P, Newgard CB, Spiegelman BM. PGC-1β in the regulation of hepatic glucose and energy metabolism. J Biol Chem. 2003;278:30843-30848.
-
(2003)
J Biol Chem
, vol.278
, pp. 30843-30848
-
-
Lin, J.1
Tarr, P.T.2
Yang, R.3
Rhee, J.4
Puigserver, P.5
Newgard, C.B.6
Spiegelman, B.M.7
-
17
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice
-
Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jäger S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell. 2004;119:121-135.
-
(2004)
Cell
, vol.119
, pp. 121-135
-
-
Lin, J.1
Wu, P.H.2
Tarr, P.T.3
Lindenberg, K.S.4
St-Pierre, J.5
Zhang, C.Y.6
Mootha, V.K.7
Jäger, S.8
Vianna, C.R.9
Reznick, R.M.10
Cui, L.11
Manieri, M.12
Donovan, M.X.13
Wu, Z.14
Cooper, M.P.15
Fan, M.C.16
Rohas, L.M.17
Zavacki, A.M.18
Cinti, S.19
Shulman, G.I.20
Lowell, B.B.21
Krainc, D.22
Spiegelman, B.M.23
more..
-
18
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
-
Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001;413:131-138.
-
(2001)
Nature
, vol.413
, pp. 131-138
-
-
Yoon, J.C.1
Puigserver, P.2
Chen, G.3
Donovan, J.4
Wu, Z.5
Rhee, J.6
Adelmant, G.7
Stafford, J.8
Kahn, C.R.9
Granner, D.K.10
Newgard, C.B.11
Spiegelman, B.M.12
-
19
-
-
2442701392
-
PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3
-
Koo SH, Satoh H, Herzig S, Lee CH, Hedrick S, Kulkarni R, Evans RM, Olefsky J, Montminy M. PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nature Med. 2004;10:530-534.
-
(2004)
Nature Med
, vol.10
, pp. 530-534
-
-
Koo, S.H.1
Satoh, H.2
Herzig, S.3
Lee, C.H.4
Hedrick, S.5
Kulkarni, R.6
Evans, R.M.7
Olefsky, J.8
Montminy, M.9
-
20
-
-
19944430411
-
Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP
-
Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S, Yang W, Pei L, Uldry M, Tontonoz P, Newgard CB, Spiegelman BM. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell. 2005;120:261-273.
-
(2005)
Cell
, vol.120
, pp. 261-273
-
-
Lin, J.1
Yang, R.2
Tarr, P.T.3
Wu, P.H.4
Handschin, C.5
Li, S.6
Yang, W.7
Pei, L.8
Uldry, M.9
Tontonoz, P.10
Newgard, C.B.11
Spiegelman, B.M.12
-
21
-
-
0033977890
-
The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
-
Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol. 2000;20:1868-1876.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 1868-1876
-
-
Vega, R.B.1
Huss, J.M.2
Kelly, D.P.3
-
22
-
-
33645820583
-
Liver-directed overexpression of mitochondrial glycerol-3-phosphate acyltransferase results in hepatic steatosis, increased triacylglycerol secretion and reduced fatty acid oxidation
-
Lindén D, William-Olsson L, Ahnmark A, Erkoos K, Hallberg C, Sjögren HP, Becker B, Svensson L, Clapham JC, Oscarsson J, Schreyer S. Liver-directed overexpression of mitochondrial glycerol-3-phosphate acyltransferase results in hepatic steatosis, increased triacylglycerol secretion and reduced fatty acid oxidation. FASEB J. 2006;20:434-443.
-
(2006)
FASEB J
, vol.20
, pp. 434-443
-
-
Lindén, D.1
William-Olsson, L.2
Ahnmark, A.3
Erkoos, K.4
Hallberg, C.5
Sjögren, H.P.6
Becker, B.7
Svensson, L.8
Clapham, J.C.9
Oscarsson, J.10
Schreyer, S.11
-
23
-
-
0035723938
-
Lipoprotein size and atherosclerosis susceptibility in Apoe(-/-) and Ldlr(-/-) mice
-
Véniant MM, Withycombe S, Young SG. Lipoprotein size and atherosclerosis susceptibility in Apoe(-/-) and Ldlr(-/-) mice. Arterioscler Thromb Vasc Biol. 2001;21:1567-1570.
-
(2001)
Arterioscler Thromb Vasc Biol
, vol.21
, pp. 1567-1570
-
-
Véniant, M.M.1
Withycombe, S.2
Young, S.G.3
-
24
-
-
26444485985
-
Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle
-
Koonen DP, Glatz JF, Bonen A, Luiken JJ. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta. 2005;1736:163-180.
-
(2005)
Biochim Biophys Acta
, vol.1736
, pp. 163-180
-
-
Koonen, D.P.1
Glatz, J.F.2
Bonen, A.3
Luiken, J.J.4
-
25
-
-
20444405347
-
Increased very low density lipoprotein secretion and gonadal fat mass in mice overexpressing liver DGAT1
-
Yamazaki T, Sasaki E, Kakinuma C, Yano T, Miura S, Ezaki O. Increased very low density lipoprotein secretion and gonadal fat mass in mice overexpressing liver DGAT1. J Biol Chem. 2005;280:21506-21514.
-
(2005)
J Biol Chem
, vol.280
, pp. 21506-21514
-
-
Yamazaki, T.1
Sasaki, E.2
Kakinuma, C.3
Yano, T.4
Miura, S.5
Ezaki, O.6
-
26
-
-
0028144804
-
Overexpression of hepatic lipase in transgenic rabbits leads to a marked reduction of plasma high density lipoproteins and intermediate density lipoproteins
-
Fan J, Wang J, Bensadoun A, Lauer SJ, Dang Q, Mahley RW, Taylor JM. Overexpression of hepatic lipase in transgenic rabbits leads to a marked reduction of plasma high density lipoproteins and intermediate density lipoproteins. Proc Natl Acad Sci of the USA. 1994;91:8724-8728.
-
(1994)
Proc Natl Acad Sci of the USA
, vol.91
, pp. 8724-8728
-
-
Fan, J.1
Wang, J.2
Bensadoun, A.3
Lauer, S.J.4
Dang, Q.5
Mahley, R.W.6
Taylor, J.M.7
-
27
-
-
0031892172
-
Over-expression of hepatic lipase in transgenic mice decreases apolipoprotein B-containing and high density lipoproteins. Evidence that hepatic lipase acts as a ligand for lipoprotein uptake
-
Dichek HL, Brecht W, Fan J, Ji ZS, McCormick SP, Akeefe H, Conzo L, Sanan DA, Weisgraber KH, Young SG, Taylor JM, Mahley RW. Over-expression of hepatic lipase in transgenic mice decreases apolipoprotein B-containing and high density lipoproteins. Evidence that hepatic lipase acts as a ligand for lipoprotein uptake. J Biol Chem. 1998;273:1896-1903.
-
(1998)
J Biol Chem
, vol.273
, pp. 1896-1903
-
-
Dichek, H.L.1
Brecht, W.2
Fan, J.3
Ji, Z.S.4
McCormick, S.P.5
Akeefe, H.6
Conzo, L.7
Sanan, D.A.8
Weisgraber, K.H.9
Young, S.G.10
Taylor, J.M.11
Mahley, R.W.12
-
28
-
-
0028852611
-
Mild dyslipidemia in mice following targeted inactivation of the hepatic lipase gene
-
Homanics GE, de Silva HV, Osada J, Zhang SH, Wong H, Borensztajn J, Maeda N. Mild dyslipidemia in mice following targeted inactivation of the hepatic lipase gene. J Biol Chem. 1995;270:2974-2980.
-
(1995)
J Biol Chem
, vol.270
, pp. 2974-2980
-
-
Homanics, G.E.1
de Silva, H.V.2
Osada, J.3
Zhang, S.H.4
Wong, H.5
Borensztajn, J.6
Maeda, N.7
-
29
-
-
5344236719
-
Hepatic lipase, lipoprotein metabolism, and atherogenesis
-
Santamarina-Fojo S, González-Navarro H, Freeman L, Wagner E, Nong Z. Hepatic lipase, lipoprotein metabolism, and atherogenesis. Arterioscler Thromb Vasc Biol. 2004;24:1750-1754.
-
(2004)
Arterioscler Thromb Vasc Biol
, vol.24
, pp. 1750-1754
-
-
Santamarina-Fojo, S.1
González-Navarro, H.2
Freeman, L.3
Wagner, E.4
Nong, Z.5
-
30
-
-
0030907175
-
Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells
-
Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest. 1997;99:846-854.
-
(1997)
J Clin Invest
, vol.99
, pp. 846-854
-
-
Shimano, H.1
Horton, J.D.2
Shimomura, I.3
Hammer, R.E.4
Brown, M.S.5
Goldstein, J.L.6
-
31
-
-
32444451567
-
Coactivation of Foxa2 through Pgc-1β promotes liver fatty acid oxidation and triglyceride/VLDL secretion
-
Wolfrum C, Stoffel M. Coactivation of Foxa2 through Pgc-1β promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metab. 2006;3:99-110.
-
(2006)
Cell Metab
, vol.3
, pp. 99-110
-
-
Wolfrum, C.1
Stoffel, M.2
-
32
-
-
11144244418
-
Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes
-
Wolfrum C, Asilmaz E, Luca E, Friedman JM, Stoffel M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature. 2004;432:1027-1032.
-
(2004)
Nature
, vol.432
, pp. 1027-1032
-
-
Wolfrum, C.1
Asilmaz, E.2
Luca, E.3
Friedman, J.M.4
Stoffel, M.5
-
33
-
-
33751022208
-
Ablation of PGC-1β results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance
-
Lelliott CJ, Medina-Gomez G, Petrovic N, Kis A, Feldmann HM, Bjursell M, Parker N, Curtis K, Campbell M, Hu P, Zhang D, Litwin SE, Zaha VG, Fountain KT, Boudina S, Jimenez-Linan M, Blount M, Lopez M, Meirhaeghe A, Bohlooly YM, Storlien L, Strömstedt M, Snaith M, Oresic M, Abel ED, Cannon B, Vidal-Puig A. Ablation of PGC-1β results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. Plos Biol. 2006;4:2042-2056.
-
(2006)
Plos Biol
, vol.4
, pp. 2042-2056
-
-
Lelliott, C.J.1
Medina-Gomez, G.2
Petrovic, N.3
Kis, A.4
Feldmann, H.M.5
Bjursell, M.6
Parker, N.7
Curtis, K.8
Campbell, M.9
Hu, P.10
Zhang, D.11
Litwin, S.E.12
Zaha, V.G.13
Fountain, K.T.14
Boudina, S.15
Jimenez-Linan, M.16
Blount, M.17
Lopez, M.18
Meirhaeghe, A.19
Bohlooly, Y.M.20
Storlien, L.21
Strömstedt, M.22
Snaith, M.23
Oresic, M.24
Abel, E.D.25
Cannon, B.26
Vidal-Puig, A.27
more..
-
34
-
-
33751400561
-
Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance
-
Vianna CR, Huntgeburth M, Coppari R, Choi CS, Lin J, Krauss S, Barbatelli G, Tzameli I, Kim YB, Cinti S, Shulman GI, Spiegelman BM, Lowell BB. Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance. Cell Metab. 2006;4:453-464.
-
(2006)
Cell Metab
, vol.4
, pp. 453-464
-
-
Vianna, C.R.1
Huntgeburth, M.2
Coppari, R.3
Choi, C.S.4
Lin, J.5
Krauss, S.6
Barbatelli, G.7
Tzameli, I.8
Kim, Y.B.9
Cinti, S.10
Shulman, G.I.11
Spiegelman, B.M.12
Lowell, B.B.13
-
35
-
-
34247590356
-
PGC-1β controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis
-
Sonoda J, Hehl IR, Chong L-W, Nofsinger RR, Evans RM. PGC-1β controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc Natl Acad Sci U S A. 2007;104:5223-5228.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 5223-5228
-
-
Sonoda, J.1
Hehl, I.R.2
Chong, L.-W.3
Nofsinger, R.R.4
Evans, R.M.5
-
36
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1:361-370.
-
(2005)
Cell Metab
, vol.1
, pp. 361-370
-
-
Lin, J.1
Handschin, C.2
Spiegelman, B.M.3
|