-
1
-
-
0034873221
-
-
For representative reviews, see: a
-
For representative reviews, see: a) H. E. Katz, Z. Bao, S. L. Gilat, Acc. Chem. Res. 2001, 34, 359.
-
(2001)
Acc. Chem. Res
, vol.34
, pp. 359
-
-
Katz, H.E.1
Bao, Z.2
Gilat, S.L.3
-
4
-
-
8544228377
-
-
d) C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Brédas, P. C. Ewbank, K. R. Mann, Chem. Mater. 2004, 16, 4436.
-
(2004)
Chem. Mater
, vol.16
, pp. 4436
-
-
Newman, C.R.1
Frisbie, C.D.2
da Silva Filho, D.A.3
Brédas, J.-L.4
Ewbank, P.C.5
Mann, K.R.6
-
5
-
-
10244229148
-
-
e) J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 2004, 104, 4971.
-
(2004)
Chem. Rev
, vol.104
, pp. 4971
-
-
Brédas, J.-L.1
Beljonne, D.2
Coropceanu, V.3
Cornil, J.4
-
8
-
-
57549094328
-
-
Ed: H. Klauk, Wiley-VCH, Weinheim, Germany
-
h) Organic Electronics (Ed: H. Klauk), Wiley-VCH, Weinheim, Germany 2006.
-
(2006)
Organic Electronics
-
-
-
9
-
-
36249032600
-
-
Eds: Z. Bao, J. Locklin, Taylor and Francis, Boca Raton, FL
-
i) Organic Field-Effect Transistors (Eds: Z. Bao, J. Locklin), Taylor and Francis, Boca Raton, FL 2007.
-
(2007)
Organic Field-Effect Transistors
-
-
-
11
-
-
2442562119
-
-
b) Z. Chen. M. G. Debije, T. Debaerdemaeker, P. Osswald, F. Würthner, ChemPhysChem 2004, 5, 137.
-
(2004)
ChemPhysChem
, vol.5
, pp. 137
-
-
Chen, Z.1
Debije, M.G.2
Debaerdemaeker, T.3
Osswald, P.4
Würthner, F.5
-
12
-
-
33645805959
-
-
c) A. J. Jones, M. J. Ahrens, M.-H. Yoon, A. Facchetti, T. J. Marks, M. R. Wasielewski, Angew. Chem. 2004, 116, 6523;
-
(2004)
Angew. Chem
, vol.116
, pp. 6523
-
-
Jones, A.J.1
Ahrens, M.J.2
Yoon, M.-H.3
Facchetti, A.4
Marks, T.J.5
Wasielewski, M.R.6
-
13
-
-
11144332890
-
-
Angew. Chem. Int. Ed. 2004, 43, 6363.
-
(2004)
Chem. Int. Ed
, vol.43
, pp. 6363
-
-
Angew1
-
14
-
-
33947177157
-
-
d) H. Z. Chen. M. M. Ling, X. Mo, M. M. Shi, M. Wang, Z. Bao, Chem. Mater 2007, 19, 816.
-
(2007)
Chem. Mater
, vol.19
, pp. 816
-
-
Chen, H.Z.1
Ling, M.M.2
Mo, X.3
Shi, M.M.4
Wang, M.5
Bao, Z.6
-
15
-
-
34250644443
-
-
e) M. M. Ling, P. Erk, M. Gomez, M. Könemann, J. Locklin, Z. Bao, Adv. Mater. 2007, 19, 1123.
-
(2007)
Adv. Mater
, vol.19
, pp. 1123
-
-
Ling, M.M.1
Erk, P.2
Gomez, M.3
Könemann, M.4
Locklin, J.5
Bao, Z.6
-
17
-
-
36248956169
-
-
-1) in vapor-deposited top-contact OFETs, cf. Ref. [2c]. However, due to the strong electron deficiency, this semiconductor exhibits negative threshold voltages due Io unintentional doping, and gives rise to 'always-on' transistors.
-
-1) in vapor-deposited top-contact OFETs, cf. Ref. [2c]. However, due to the strong electron deficiency, this semiconductor exhibits negative threshold voltages due Io unintentional doping, and gives rise to 'always-on' transistors.
-
-
-
-
18
-
-
33748588699
-
-
F. Würthner, P. Osswald. R. Schmidt, T. E. Kaiser, H. Mansikkamäki, M. Könemann, Org. Lett. 2006, 8, 3765.
-
(2006)
Org. Lett
, vol.8
, pp. 3765
-
-
Würthner, F.1
Osswald, P.2
Schmidt, R.3
Kaiser, T.E.4
Mansikkamäki, H.5
Könemann, M.6
-
19
-
-
36248958201
-
-
2 shows little differences in electronic, structural, spectroscopic, and transport properties, irrespective of using the pure 1,7 compound or samples containing up to 15 % contamination of the 1,6 isomer (for details see Supporting Information).
-
2 shows little differences in electronic, structural, spectroscopic, and transport properties, irrespective of using the pure 1,7 compound or samples containing up to 15 % contamination of the 1,6 isomer (for details see Supporting Information).
-
-
-
-
20
-
-
0009738151
-
-
I. Seguy, P. Jolinat, P. Destruel, R. Mamy, H. Allouchi, C. Courseille, M. Cotrait, H. Bock, ChemPhysChem 2001, 2, 448.
-
(2001)
ChemPhysChem
, vol.2
, pp. 448
-
-
Seguy, I.1
Jolinat, P.2
Destruel, P.3
Mamy, R.4
Allouchi, H.5
Courseille, C.6
Cotrait, M.7
Bock, H.8
-
21
-
-
36248961167
-
-
3 groups to reduce conformational flexibility. Electronic energies are discussed throughout the text.
-
3 groups to reduce conformational flexibility. Electronic energies are discussed throughout the text.
-
-
-
-
22
-
-
0036025403
-
-
J. C. Rienstra-Kiracofe, G. Tschumper, H. F. Schaet'er, III, S. Nandi, G. B. Ellison, Chem. Rev. 2002, 102, 231.
-
(2002)
Chem. Rev
, vol.102
, pp. 231
-
-
Rienstra-Kiracofe, J.C.1
Tschumper, G.2
Schaet'er III, H.F.3
Nandi, S.4
Ellison, G.B.5
-
23
-
-
21144473420
-
-
Within the hopping regime, charge transport in organic solid materials can be described by Marcus theory, Ref. [1b.e,10a.b]: a R. A. Marcus. Rev. Mod. Phys. 1993, 65, 599.
-
Within the hopping regime, charge transport in organic solid materials can be described by Marcus theory, Ref. [1b.e,10a.b]: a) R. A. Marcus. Rev. Mod. Phys. 1993, 65, 599.
-
-
-
-
24
-
-
34248334149
-
-
V. Coropceanu, J. Cornil, D. A. S. Filho, Y. Olivier, R. Silbey, J.-L. Brédas, Chem. Rev. 2007, 107, 926. In the most simple model, the rate constant for charge transfer depends on the reorganization energy, i.e, the energy required for structural change during electron self-exchange, and the transfer integral that depends on intermolecular electronic overlap. Inner reorganization energies are readily amenable to computations and values of 299 and 313 meV have been calculated at the B3LYP/6-311+G(d,p)//6-31G(d) level for truncated PBI-F2 and PBI-F4, respectively. Ref, 8, This small difference cannot account for the lower charge carrier mobility of the latter which, therefore, should originate from the very different packing motifs of the two derivatives and thin film morphology. For computational details, see Ref, 11b
-
4, respectively. Ref. [8]. This small difference cannot account for the lower charge carrier mobility of the latter which, therefore, should originate from the very different packing motifs of the two derivatives and thin film morphology. For computational details, see Ref. [11b].
-
-
-
-
25
-
-
34250333073
-
-
a) M.-Y. Kuo, H.-Y. Chen, I. Chao, Chem. Eur. J. 2007, 13, 4750.
-
(2007)
Chem. Eur. J
, vol.13
, pp. 4750
-
-
Kuo, M.-Y.1
Chen, H.-Y.2
Chao, I.3
|