메뉴 건너뛰기




Volumn 27, Issue 2, 1997, Pages 139-172

Pruning Algorithms for Rule Learning

Author keywords

Inductive Logic Programming; Inductive Rule Learning; Noise Handling; Pruning

Indexed keywords

DECISION THEORY; LEARNING ALGORITHMS; LOGIC PROGRAMMING; PROBLEM SOLVING;

EID: 0031139832     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1007329424533     Document Type: Article
Times cited : (92)

References (38)
  • 1
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • Angluin, D., & Laird, P. (1988). Learning from noisy examples. Machine Learning, 2(4), 343-370.
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 7
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3(4), 261-283.
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 11
    • 0003323974 scopus 로고
    • The application of inductive logic programming to finite-element mesh design
    • S. H. Muggleton (Ed.), London, UK: Academic Press
    • Dolšak, B., & Muggleton, S. (1992). The application of inductive logic programming to finite-element mesh design. In S. H. Muggleton (Ed.), Inductive Logic Programming. London, UK: Academic Press.
    • (1992) Inductive Logic Programming
    • Dolšak, B.1    Muggleton, S.2
  • 16
    • 24444448933 scopus 로고
    • Technical Report OEFAI-TR-95-03. Vienna, Austria: Austrian Research Institute for Artificial Intelligence
    • Fürnkranz, J. (1995a). A tight integration of pruning and learning (Technical Report OEFAI-TR-95-03). Vienna, Austria: Austrian Research Institute for Artificial Intelligence.
    • (1995) A Tight Integration of Pruning and Learning
    • Fürnkranz, J.1
  • 18
    • 0342405079 scopus 로고    scopus 로고
    • Technical Report OEFAI-TR-96-25. Vienna, Austria: Austrian Research Institute for Artificial Intelligence. Submitted for publication
    • Fürnkranz, J. (1996). Separate-and-conquer rule learning (Technical Report OEFAI-TR-96-25). Vienna, Austria: Austrian Research Institute for Artificial Intelligence. Submitted for publication.
    • (1996) Separate-and-conquer Rule Learning
    • Fürnkranz, J.1
  • 20
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63-91.
    • (1993) Machine Learning , vol.11 , pp. 63-91
    • Holte, R.C.1
  • 25
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision tree induction
    • Mingers, J. (1989). An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4, 227-243.
    • (1989) Machine Learning , vol.4 , pp. 227-243
    • Mingers, J.1
  • 27
    • 0005801045 scopus 로고
    • Learning decision rules in noisy domains
    • M. Bramer (Ed.), Cambridge, UK: Cambridge University Press
    • Niblett, T., & Bratko, I. (1987). Learning decision rules in noisy domains. In M. Bramer (Ed.), Research and Development in Expert Systems. Cambridge, UK: Cambridge University Press.
    • (1987) Research and Development in Expert Systems
    • Niblett, T.1    Bratko, I.2
  • 28
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical learning
    • Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine Learning, 5, 71-99.
    • (1990) Machine Learning , vol.5 , pp. 71-99
    • Pagallo, G.1    Haussler, D.2
  • 30
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239-266.
    • (1990) Machine Learning , vol.5 , pp. 239-266
    • Quinlan, J.R.1
  • 33
    • 0000431236 scopus 로고
    • Induction of logic programs: FOIL and related systems
    • Quinlan, J. R., & Cameron-Jones, R. M. (1995). Induction of logic programs: FOIL and related systems. New Generation Computing, 13(3,4), 287-312.
    • (1995) New Generation Computing , vol.13 , Issue.3-4 , pp. 287-312
    • Quinlan, J.R.1    Cameron-Jones, R.M.2
  • 34
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 35
    • 0001259758 scopus 로고
    • Overfitting avoidance as bias
    • Schaffer, C. (1993). Overfitting avoidance as bias. Machine Learning, 10, 153-178.
    • (1993) Machine Learning , vol.10 , pp. 153-178
    • Schaffer, C.1
  • 38
    • 0342541576 scopus 로고
    • Technical Report SFI TR 92-03-5001. Santa Fe, NM: The Santa Fe Institute
    • Wolpert, D. H. (1993). On overfitting avoidance as bias (Technical Report SFI TR 92-03-5001). Santa Fe, NM: The Santa Fe Institute.
    • (1993) On Overfitting Avoidance as Bias
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.