메뉴 건너뛰기




Volumn 154, Issue 1-2, 2004, Pages 95-126

Incremental learning with partial instance memory

Author keywords

Concept drift; Incremental learning; On line concept learning; Partial instance memory

Indexed keywords

CONCEPT DRIFT; INCREMENTAL LEARNING; ONLINE CONCEPT LEARNING; PARTIAL INSTANCE MEMORY;

EID: 1242310003     PISSN: 00043702     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artint.2003.04.001     Document Type: Article
Times cited : (99)

References (70)
  • 2
    • 0024104159 scopus 로고
    • A method for attribute selection in inductive learning systems
    • Baim P. A method for attribute selection in inductive learning systems. IEEE Trans. Pattern Anal. Machine Intell. 10:(6):1988;888-896.
    • (1988) IEEE Trans. Pattern Anal. Machine Intell. , vol.10 , Issue.6 , pp. 888-896
    • Baim, P.1
  • 3
    • 24544439485 scopus 로고
    • Topics in incremental learning of discriminant descriptions
    • Department of Computer Science, University of Illinois, Urbana, IL
    • J. Becker, Topics in incremental learning of discriminant descriptions, Technical Report UIUCDCS-F-85-935, Department of Computer Science, University of Illinois, Urbana, IL, 1985.
    • (1985) Technical Report , vol.UIUCDCS-F-85-935
    • Becker, J.1
  • 5
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Sciences, University of California, Irvine, CA
    • C. Blake, C. Merz, UCI repository of machine learning databases, http://www.ics.uci.edu/̃mlearn/mlrepository.html, Department of Information and Computer Sciences, University of California, Irvine, CA, 1998.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Merz, C.2
  • 7
    • 0042969843 scopus 로고
    • AQ17 - A multistrategy learning system: The method and user's guide
    • Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA
    • E. Bloedorn, J. Wnek, R. Michalski, K. Kaufman, AQ17 - A multistrategy learning system: The method and user's guide, Reports of the Machine Learning and Inference Laboratory MLI 93-12, Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA, 1993.
    • (1993) Reports of the Machine Learning and Inference Laboratory , vol.MLI 93-12
    • Bloedorn, E.1    Wnek, J.2    Michalski, R.3    Kaufman, K.4
  • 9
    • 0003449626 scopus 로고    scopus 로고
    • Upper Saddle River, NJ: Prentice-Hall
    • Catania A. Learning. 4th Edition: 1998;Prentice-Hall, Upper Saddle River, NJ.
    • (1998) Learning 4th Edition
    • Catania, A.1
  • 11
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark P., Niblett T. The CN2 induction algorithm. Machine Learning. 3:1989;261-284.
    • (1989) Machine Learning , vol.3 , pp. 261-284
    • Clark, P.1    Niblett, T.2
  • 14
    • 0023294428 scopus 로고
    • An intrusion-detection model
    • Denning D. An intrusion-detection model. IEEE Trans. Software Engrg. SE. 13:(2):1987;222-232.
    • (1987) IEEE Trans. Software Engrg. SE , vol.13 , Issue.2 , pp. 222-232
    • Denning, D.1
  • 16
    • 0002815587 scopus 로고    scopus 로고
    • A general method for scaling up machine learning algorithms and its application to clustering
    • San Francisco, CA: Morgan Kaufmann
    • Domingos P., Hulten G. A general method for scaling up machine learning algorithms and its application to clustering. Proceedings of the Eighteenth International Conference on Machine Learning. 2001;106-113 Morgan Kaufmann, San Francisco, CA.
    • (2001) Proceedings of the Eighteenth International Conference on Machine Learning , pp. 106-113
    • Domingos, P.1    Hulten, G.2
  • 17
    • 0003930012 scopus 로고    scopus 로고
    • ADORE: Adaptive object recognition
    • Draper B., Bins J., Baek K. ADORE: Adaptive object recognition. Videre. 1:(4):2000;86-99. http://mitpress.mit.edu/e-journals/Videre/001/v14.html.
    • (2000) Videre , vol.1 , Issue.4 , pp. 86-99
    • Draper, B.1    Bins, J.2    Baek, K.3
  • 18
    • 0342494125 scopus 로고
    • An incremental deductive strategy for controlling constructive induction in learning from examples
    • Elio R., Watanabe L. An incremental deductive strategy for controlling constructive induction in learning from examples. Machine Learning. 7:1991;7-44.
    • (1991) Machine Learning , vol.7 , pp. 7-44
    • Elio, R.1    Watanabe, L.2
  • 20
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R. The use of multiple measurements in taxonomic problems. Annals of Eugenics. 7:1936;179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.1
  • 21
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the Query by Committee algorithm
    • Freund Y., Seung H., Shamir E., Tishby N. Selective sampling using the Query by Committee algorithm. Machine Learning. 28:1997;133-168.
    • (1997) Machine Learning , vol.28 , pp. 133-168
    • Freund, Y.1    Seung, H.2    Shamir, E.3    Tishby, N.4
  • 23
    • 1242352816 scopus 로고
    • Reconstructive and reproductive models of memory
    • Hall J. Reconstructive and reproductive models of memory. Bull. Psychonomic Soc. 28:1990;191-194.
    • (1990) Bull. Psychonomic Soc. , vol.28 , pp. 191-194
    • Hall, J.1
  • 26
  • 28
    • 0026995495 scopus 로고
    • ChiMerge: Discretization of numeric attributes
    • San Jose, CA, Menlo Park, CA: AAAI Press
    • Kerber R. ChiMerge: Discretization of numeric attributes. Proceedings of AAAI-92, San Jose, CA. 1992;123-128 AAAI Press, Menlo Park, CA.
    • (1992) Proceedings of AAAI-92 , pp. 123-128
    • Kerber, R.1
  • 30
    • 0026844245 scopus 로고
    • Forgetting and aging of knowledge in concept formation
    • Kubat M., Krizakova I. Forgetting and aging of knowledge in concept formation. Appl. Artificial Intelligence. 6:1992;195-206.
    • (1992) Appl. Artificial Intelligence , vol.6 , pp. 195-206
    • Kubat, M.1    Krizakova, I.2
  • 31
    • 77949731575 scopus 로고    scopus 로고
    • Temporal sequence learning and data reduction for anomaly detection
    • Lane T., Brodley C. Temporal sequence learning and data reduction for anomaly detection. ACM Trans. Inform. System Security. 2:(3):1999;295-331.
    • (1999) ACM Trans. Inform. System Security , vol.2 , Issue.3 , pp. 295-331
    • Lane, T.1    Brodley, C.2
  • 32
    • 0034455983 scopus 로고    scopus 로고
    • Adaptive intrusion detection: A data mining approach
    • Lee W., Stolfo S., Mok K. Adaptive intrusion detection: A data mining approach. Artificial Intelligence Rev. 14:(6):2000;533-567.
    • (2000) Artificial Intelligence Rev. , vol.14 , Issue.6 , pp. 533-567
    • Lee, W.1    Stolfo, S.2    Mok, K.3
  • 33
    • 0032596570 scopus 로고    scopus 로고
    • Selective sampling for nearest neighbor classifiers
    • Orland, FL, Menlo Park, CA: AAAI Press
    • Lindenbaum M., Markovich S., Rusakov D. Selective sampling for nearest neighbor classifiers. Proceedings of AAAI-99, Orland, FL. 1999;366-371 AAAI Press, Menlo Park, CA.
    • (1999) Proceedings of AAAI-99 , pp. 366-371
    • Lindenbaum, M.1    Markovich, S.2    Rusakov, D.3
  • 35
    • 0002248235 scopus 로고    scopus 로고
    • Recognizing people by their gate: The shape of motion
    • Little J., Boyd J. Recognizing people by their gate: The shape of motion. Videre. 1:(2):1998;1-32. http://mitpress.mit.edu/e-journals/Videre/001/v12.html.
    • (1998) Videre , vol.1 , Issue.2 , pp. 1-32
    • Little, J.1    Boyd, J.2
  • 36
    • 0000511449 scopus 로고
    • Redundant noisy attributes, attribute errors, and linear-threshold learning using Winnow
    • San Francisco, CA: Morgan Kaufmann
    • Littlestone N. Redundant noisy attributes, attribute errors, and linear-threshold learning using Winnow. Proceedings of the Fourth Annual Workshop on Computational Learning Theory. 1991;147-156 Morgan Kaufmann, San Francisco, CA.
    • (1991) Proceedings of the Fourth Annual Workshop on Computational Learning Theory , pp. 147-156
    • Littlestone, N.1
  • 38
    • 0141741872 scopus 로고    scopus 로고
    • PhD Thesis, School of Information Technology and Engineering, George Mason University, Fairfax, VA
    • M. Maloof, Progressive partial memory learning, PhD Thesis, School of Information Technology and Engineering, George Mason University, Fairfax, VA, 1996.
    • (1996) Progressive Partial Memory Learning
    • Maloof, M.1
  • 43
    • 0030778013 scopus 로고    scopus 로고
    • Learning symbolic descriptions of shape for object recognition in X-ray images
    • Maloof M., Michalski R. Learning symbolic descriptions of shape for object recognition in X-ray images. Expert Systems Appl. 12:(1):1997;11-20.
    • (1997) Expert Systems Appl. , vol.12 , Issue.1 , pp. 11-20
    • Maloof, M.1    Michalski, R.2
  • 44
    • 0034299906 scopus 로고    scopus 로고
    • Selecting examples for partial memory learning
    • Maloof M., Michalski R. Selecting examples for partial memory learning. Machine Learning. 41:2000;27-52.
    • (2000) Machine Learning , vol.41 , pp. 27-52
    • Maloof, M.1    Michalski, R.2
  • 45
    • 84884637057 scopus 로고    scopus 로고
    • Incremental learning with partial instance memory
    • Foundations of Intelligent Systems, Berlin: Springer
    • Maloof M., Michalski R. Incremental learning with partial instance memory. Foundations of Intelligent Systems. Lecture Notes in Artificial Intelligence. vol. 2366:2002;16-27 Springer, Berlin.
    • (2002) Lecture Notes in Artificial Intelligence , vol.2366 , pp. 16-27
    • Maloof, M.1    Michalski, R.2
  • 47
    • 0346269510 scopus 로고    scopus 로고
    • The AQ-19 system for machine learning and pattern discovery: A general description and user's guide
    • Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA
    • R. Michalski, K. Kaufman, The AQ-19 system for machine learning and pattern discovery: A general description and user's guide, Reports of the Machine Learning and Inference Laboratory MLI 01-4, Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA, 2001.
    • (2001) Reports of the Machine Learning and Inference Laboratory , vol.MLI 01-4
    • Michalski, R.1    Kaufman, K.2
  • 48
    • 0141629996 scopus 로고
    • 1 hypotheses: The underlying methodology and the description of program AQ11
    • Department of Computer Science, University of Illinois, Urbana
    • 1 hypotheses: The underlying methodology and the description of program AQ11, Technical Report UIUCDCS-F-83-905, Department of Computer Science, University of Illinois, Urbana, 1983.
    • (1983) Technical Report , vol.UIUCDCS-F-83-905
    • Michalski, R.1    Larson, J.2
  • 50
    • 26944482073 scopus 로고
    • AQVAL/1 - Computer implementation of a variable-valued logic system and its application to pattern recognition
    • Washington, DC
    • Michalski R. AQVAL/1 - Computer implementation of a variable-valued logic system and its application to pattern recognition. Proceedings of IJCAI-69, Washington, DC. 1969;3-17.
    • (1969) Proceedings of IJCAI-69 , pp. 3-17
    • Michalski, R.1
  • 51
    • 0019033513 scopus 로고
    • Pattern recognition as rule-guided inductive inference
    • Michalski R. Pattern recognition as rule-guided inductive inference. IEEE Trans. Pattern Anal. Machine Intell. 2:(4):1980;349-361.
    • (1980) IEEE Trans. Pattern Anal. Machine Intell. , vol.2 , Issue.4 , pp. 349-361
    • Michalski, R.1
  • 52
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • R. Michalski, J. Carbonell, & T. Mitchell. San Francisco, CA: Morgan Kaufmann
    • Michalski R. A theory and methodology of inductive learning. Michalski R., Carbonell J., Mitchell T. Machine Learning: An Artificial Intelligence Approach, vol. 1. 1983;83-134 Morgan Kaufmann, San Francisco, CA.
    • (1983) Machine Learning: An Artificial Intelligence Approach , vol.1 , pp. 83-134
    • Michalski, R.1
  • 53
    • 84891750688 scopus 로고    scopus 로고
    • Selective sampling with redundant views
    • Austin, TX, Menlo Park, CA: AAAI Press
    • Muslea I., Minton S., Knoblock C. Selective sampling with redundant views. Proceedings of AAAI-2000, Austin, TX. 2000;621-626 AAAI Press, Menlo Park, CA.
    • (2000) Proceedings of AAAI-2000 , pp. 621-626
    • Muslea, I.1    Minton, S.2    Knoblock, C.3
  • 54
    • 0034313836 scopus 로고    scopus 로고
    • Probabilistic models of appearance for 3-D object recognition
    • Pope A., Lowe D. Probabilistic models of appearance for 3-D object recognition. Intern. J. Comput. Vision. 40:(2):2000;149-167.
    • (2000) Intern. J. Comput. Vision , vol.40 , Issue.2 , pp. 149-167
    • Pope, A.1    Lowe, D.2
  • 56
    • 0006033840 scopus 로고
    • Incremental learning of concept descriptions: A method and experimental results
    • J. Hayes, D. Michie, & J. Richards. Oxford: Clarendon Press
    • Reinke R., Michalski R. Incremental learning of concept descriptions: A method and experimental results. Hayes J., Michie D., Richards J. Machine Intelligence. vol. 11:1988;263-288 Clarendon Press, Oxford.
    • (1988) Machine Intelligence , vol.11 , pp. 263-288
    • Reinke, R.1    Michalski, R.2
  • 59
    • 0034187513 scopus 로고    scopus 로고
    • Supervised learning of large perceptual organization: Graph spectral partitioning and learning automata
    • Sarkar S., Soundararajan P. Supervised learning of large perceptual organization: Graph spectral partitioning and learning automata. IEEE Trans. Pattern Anal. Machine Intell. 22:(5):2000;504-525.
    • (2000) IEEE Trans. Pattern Anal. Machine Intell. , vol.22 , Issue.5 , pp. 504-525
    • Sarkar, S.1    Soundararajan, P.2
  • 60
    • 84880692052 scopus 로고    scopus 로고
    • A brief introduction to boosting
    • Stockholm, Sweden, San Francisco, CA: Morgan Kaufmann
    • Schapire R. A brief introduction to boosting. Proceedings of IJCAI-99, Stockholm, Sweden. 1999;Morgan Kaufmann, San Francisco, CA.
    • (1999) Proceedings of IJCAI-99
    • Schapire, R.1
  • 61
    • 85018095293 scopus 로고
    • Beyond incremental processing: Tracking concept drift
    • Philadelphia, PA, Menlo Park, CA: AAAI Press
    • Schlimmer J., Granger R. Beyond incremental processing: Tracking concept drift. Proceedings of AAAI-86, Philadelphia, PA. 1986;502-507 AAAI Press, Menlo Park, CA.
    • (1986) Proceedings of AAAI-86 , pp. 502-507
    • Schlimmer, J.1    Granger, R.2
  • 65
    • 0031246271 scopus 로고    scopus 로고
    • Decision tree induction based on efficient tree restructuring
    • Utgoff P., Berkman N., Clouse J. Decision tree induction based on efficient tree restructuring. Machine Learning. 29:1997;5-44.
    • (1997) Machine Learning , vol.29 , pp. 5-44
    • Utgoff, P.1    Berkman, N.2    Clouse, J.3
  • 67
    • 0031164523 scopus 로고    scopus 로고
    • Tracking context changes through meta-learning
    • Widmer G. Tracking context changes through meta-learning. Machine Learning. 27:1997;259-286.
    • (1997) Machine Learning , vol.27 , pp. 259-286
    • Widmer, G.1
  • 68
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer G., Kubat M. Learning in the presence of concept drift and hidden contexts. Machine Learning. 23:1996;69-101.
    • (1996) Machine Learning , vol.23 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 69
    • 0000027741 scopus 로고
    • Learning structural descriptions from examples
    • P. Winston. Cambridge, MA: MIT Press
    • Winston P. Learning structural descriptions from examples. Winston P. Psychology of Computer Vision. 1975;MIT Press, Cambridge, MA.
    • (1975) Psychology of Computer Vision
    • Winston, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.