-
1
-
-
0013224752
-
Maintaining the performance of a learned classifier under concept drift
-
Black M, Hickey RJ (1999) Maintaining the performance of a learned classifier under concept drift, Intelligent Data Analysis 3: 453-474
-
(1999)
Intelligent Data Analysis
, vol.3
, pp. 453-474
-
-
Black, M.1
Hickey, R.J.2
-
2
-
-
84945272719
-
Refined time stamps for concept drift detection during mining for classification rules
-
Roddick K, Hornsby JF (Eds) Spatio-Temporal Data Mining (TSDM 2000). Springer, Berlin Heidelberg New York
-
Hickey RJ, Black M (2001) Refined time stamps for concept drift detection during mining for classification rules. In: Roddick K, Hornsby JF (Eds) Spatio-Temporal Data Mining (TSDM 2000). Lecture Notes in Artificial Intelligence 2007. Springer, Berlin Heidelberg New York, pp. 20-30
-
(2001)
Lecture Notes in Artificial Intelligence
, vol.2007
, pp. 20-30
-
-
Hickey, R.J.1
Black, M.2
-
3
-
-
0030125436
-
Noise modelling and evaluating learning from examples
-
Hickey RJ (1996) Noise modelling and evaluating learning from examples, Artificial Intelligence 82: 157-179
-
(1996)
Artificial Intelligence
, vol.82
, pp. 157-179
-
-
Hickey, R.J.1
-
4
-
-
0000833531
-
The impact of changing populations on classifier performance
-
Chaudhuri S, Madigan D (Eds) , San Diego, CA: ACM Press
-
Kelly MG, Hand DJ, Adams NM (1999) The impact of changing populations on classifier performance. In: Chaudhuri S, Madigan D (Eds) Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA: ACM Press, pp. 367-371
-
(1999)
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 367-371
-
-
Kelly, M.G.1
Hand, D.J.2
Adams, N.M.3
-
5
-
-
22944487509
-
Concept versioning: A methodology for tracking evolutionary concept drift in dynamic concept systems
-
Cohn AG (Eds) . Amsterdam, Nertherlands, Wiley, Chichester, England
-
Klenner M, Hahn U (1994) Concept versioning: A methodology for tracking evolutionary concept drift in dynamic concept systems. In: Cohn AG (Eds) Proceedings of Eleventh European Conference on Artificial Intelligence. Amsterdam, Nertherlands, Wiley, Chichester, England, pp. 473-477
-
(1994)
Proceedings of Eleventh European Conference on Artificial Intelligence
, pp. 473-477
-
-
Klenner, M.1
Hahn, U.2
-
7
-
-
0002896413
-
Tracking drifting concepts by minimising disagreements
-
Hembold DP, Long PM (1994) Tracking drifting concepts by minimising disagreements, Machine Learning 14: 27-45
-
(1994)
Machine Learning
, vol.14
, pp. 27-45
-
-
Hembold, D.P.1
Long, P.M.2
-
9
-
-
0031164523
-
Tracking changes through meta-learning
-
Widmer G (1997) Tracking changes through meta-learning, Machine Learning 27: 259-286
-
(1997)
Machine Learning
, vol.27
, pp. 259-286
-
-
Widmer, G.1
-
10
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts, Machine Learning 23: 69-101
-
(1996)
Machine Learning
, vol.23
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
-
11
-
-
0002758989
-
Mining surprising patterns using temporal description length
-
Gupta A, Shmueli O, Widom J (Eds). Morgan Kaufmann, San Mateo, California
-
Chakrabarti S, Sarawagi S, Dom B (1998) Mining surprising patterns using temporal description length. In: Gupta A, Shmueli O, Widom J (Eds) Proceedings of the Twenty-Fourth International Conference on Very Large databases. Morgan Kaufmann, San Mateo, California, pp. 606-661
-
(1998)
Proceedings of the Twenty-fourth International Conference on Very Large Databases
, pp. 606-661
-
-
Chakrabarti, S.1
Sarawagi, S.2
Dom, B.3
-
12
-
-
84956869225
-
Mining temporal features in association rules
-
Zytkow J, Rauch J (Eds) Proceedings of the Third European Conference on Principles and Practice of Knowledge Discovery in Databases. Springer, Berlin Heidelberg New York
-
Chen X, Petrounias I (1999) Mining temporal features in association rules. In: Zytkow J, Rauch J (Eds) Proceedings of the Third European Conference on Principles and Practice of Knowledge Discovery in Databases. Lecture Notes in Artificial Intelligence, Vol. 1704. Springer, Berlin Heidelberg New York, pp. 295-300
-
(1999)
Lecture Notes in Artificial Intelligence
, vol.1704
, pp. 295-300
-
-
Chen, X.1
Petrounias, I.2
-
14
-
-
33751177531
-
-
See5
-
Quinlan JR (1998) See5. www.rulequest.com/
-
(1998)
-
-
Quinlan, J.R.1
-
15
-
-
0031246271
-
Decision tree induction based on efficient tree restructuring
-
Utgoff PE (1997) Decision tree induction based on efficient tree restructuring, Machine Learning 29: 5-44
-
(1997)
Machine Learning
, vol.29
, pp. 5-44
-
-
Utgoff, P.E.1
-
16
-
-
85015191605
-
Rule induction with CN2: Some recent improvements
-
Kodratof (Eds). Lecture Notes in Artificial Intelligence. Springer, Berlin Heidelberg New York
-
Clark P, Boswell R (1991) Rule induction with CN2: some recent improvements. In: Kodratof (Eds) Proceedings of the European Workshop on Learning (EWSL-91). Lecture Notes in Artificial Intelligence. Springer, Berlin Heidelberg New York, pp. 151-163
-
(1991)
Proceedings of the European Workshop on Learning (EWSL-91)
, pp. 151-163
-
-
Clark, P.1
Boswell, R.2
|