메뉴 건너뛰기




Volumn 8, Issue 2, 2003, Pages 102-108

Learning classification rules for telecom customer call data under concept drift

Author keywords

Adaptive learning; Concept drift; Decision trees; User profiling

Indexed keywords


EID: 24644449205     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-002-0250-2     Document Type: Article
Times cited : (19)

References (17)
  • 1
    • 0013224752 scopus 로고    scopus 로고
    • Maintaining the performance of a learned classifier under concept drift
    • Black M, Hickey RJ (1999) Maintaining the performance of a learned classifier under concept drift, Intelligent Data Analysis 3: 453-474
    • (1999) Intelligent Data Analysis , vol.3 , pp. 453-474
    • Black, M.1    Hickey, R.J.2
  • 2
    • 84945272719 scopus 로고    scopus 로고
    • Refined time stamps for concept drift detection during mining for classification rules
    • Roddick K, Hornsby JF (Eds) Spatio-Temporal Data Mining (TSDM 2000). Springer, Berlin Heidelberg New York
    • Hickey RJ, Black M (2001) Refined time stamps for concept drift detection during mining for classification rules. In: Roddick K, Hornsby JF (Eds) Spatio-Temporal Data Mining (TSDM 2000). Lecture Notes in Artificial Intelligence 2007. Springer, Berlin Heidelberg New York, pp. 20-30
    • (2001) Lecture Notes in Artificial Intelligence , vol.2007 , pp. 20-30
    • Hickey, R.J.1    Black, M.2
  • 3
    • 0030125436 scopus 로고    scopus 로고
    • Noise modelling and evaluating learning from examples
    • Hickey RJ (1996) Noise modelling and evaluating learning from examples, Artificial Intelligence 82: 157-179
    • (1996) Artificial Intelligence , vol.82 , pp. 157-179
    • Hickey, R.J.1
  • 5
    • 22944487509 scopus 로고
    • Concept versioning: A methodology for tracking evolutionary concept drift in dynamic concept systems
    • Cohn AG (Eds) . Amsterdam, Nertherlands, Wiley, Chichester, England
    • Klenner M, Hahn U (1994) Concept versioning: A methodology for tracking evolutionary concept drift in dynamic concept systems. In: Cohn AG (Eds) Proceedings of Eleventh European Conference on Artificial Intelligence. Amsterdam, Nertherlands, Wiley, Chichester, England, pp. 473-477
    • (1994) Proceedings of Eleventh European Conference on Artificial Intelligence , pp. 473-477
    • Klenner, M.1    Hahn, U.2
  • 7
    • 0002896413 scopus 로고
    • Tracking drifting concepts by minimising disagreements
    • Hembold DP, Long PM (1994) Tracking drifting concepts by minimising disagreements, Machine Learning 14: 27-45
    • (1994) Machine Learning , vol.14 , pp. 27-45
    • Hembold, D.P.1    Long, P.M.2
  • 9
    • 0031164523 scopus 로고    scopus 로고
    • Tracking changes through meta-learning
    • Widmer G (1997) Tracking changes through meta-learning, Machine Learning 27: 259-286
    • (1997) Machine Learning , vol.27 , pp. 259-286
    • Widmer, G.1
  • 10
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts, Machine Learning 23: 69-101
    • (1996) Machine Learning , vol.23 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 12
    • 84956869225 scopus 로고    scopus 로고
    • Mining temporal features in association rules
    • Zytkow J, Rauch J (Eds) Proceedings of the Third European Conference on Principles and Practice of Knowledge Discovery in Databases. Springer, Berlin Heidelberg New York
    • Chen X, Petrounias I (1999) Mining temporal features in association rules. In: Zytkow J, Rauch J (Eds) Proceedings of the Third European Conference on Principles and Practice of Knowledge Discovery in Databases. Lecture Notes in Artificial Intelligence, Vol. 1704. Springer, Berlin Heidelberg New York, pp. 295-300
    • (1999) Lecture Notes in Artificial Intelligence , vol.1704 , pp. 295-300
    • Chen, X.1    Petrounias, I.2
  • 14
    • 33751177531 scopus 로고    scopus 로고
    • See5
    • Quinlan JR (1998) See5. www.rulequest.com/
    • (1998)
    • Quinlan, J.R.1
  • 15
    • 0031246271 scopus 로고    scopus 로고
    • Decision tree induction based on efficient tree restructuring
    • Utgoff PE (1997) Decision tree induction based on efficient tree restructuring, Machine Learning 29: 5-44
    • (1997) Machine Learning , vol.29 , pp. 5-44
    • Utgoff, P.E.1
  • 16
    • 85015191605 scopus 로고
    • Rule induction with CN2: Some recent improvements
    • Kodratof (Eds). Lecture Notes in Artificial Intelligence. Springer, Berlin Heidelberg New York
    • Clark P, Boswell R (1991) Rule induction with CN2: some recent improvements. In: Kodratof (Eds) Proceedings of the European Workshop on Learning (EWSL-91). Lecture Notes in Artificial Intelligence. Springer, Berlin Heidelberg New York, pp. 151-163
    • (1991) Proceedings of the European Workshop on Learning (EWSL-91) , pp. 151-163
    • Clark, P.1    Boswell, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.