-
1
-
-
0008752912
-
A statistical analysis of the effect of noise injection during neural network training
-
Abunawass, A. M., & Owen, C. B. (1993). A statistical analysis of the effect of noise injection during neural network training. SPIE Proceedings, 1966, 362-371.
-
(1993)
SPIE Proceedings
, vol.1966
, pp. 362-371
-
-
Abunawass, A.M.1
Owen, C.B.2
-
2
-
-
0026410053
-
Simulated annealing approach in back-propagation
-
Amato, S., Apolloni, B., Caporali, G., Madesani, U., & Zanaboni, A. (1991). Simulated annealing approach in back-propagation. Neurocomputing, 3, 207-220.
-
(1991)
Neurocomputing
, vol.3
, pp. 207-220
-
-
Amato, S.1
Apolloni, B.2
Caporali, G.3
Madesani, U.4
Zanaboni, A.5
-
3
-
-
33244461073
-
Stability of Stochastic Approximation under Verifiable Conditions
-
Andrieu, C., Moulines, E., & Priouret, P. (2005). Stability of Stochastic Approximation Under Verifiable Conditions. SIAM J. Control and Optimization, 44, 283-312.
-
(2005)
SIAM J. Control and Optimization
, vol.44
, pp. 283-312
-
-
Andrieu, C.1
Moulines, E.2
Priouret, P.3
-
4
-
-
0027599793
-
Universal approximation bounds for superposition of a sigmoidal function
-
Barron, A. (1993). Universal approximation bounds for superposition of a sigmoidal function. IEEE Transactions on Information Theory, 3, 930-945.
-
(1993)
IEEE Transactions on Information Theory
, vol.3
, pp. 930-945
-
-
Barron, A.1
-
5
-
-
0000389960
-
Constructing hidden units using examples and queries
-
Kaufmann San Mateo
-
Baum, E. B., & Lang, K. J. (1991). Constructing hidden units using examples and queries. In Advances in neural information processing systems (Vol. 3, pp. 904-910). San Mateo: Kaufmann.
-
(1991)
Advances in Neural Information Processing Systems
, vol.3
, pp. 904-910
-
-
Baum, E.B.1
Lang, K.J.2
-
7
-
-
0033329123
-
Stochastic approximation algorithms: Overview and recent trends
-
Bharath, B., & Borkar, V. S. (1999). Stochastic approximation algorithms: overview and recent trends. Sadhana, 24, 425-452.
-
(1999)
Sadhana
, vol.24
, pp. 425-452
-
-
Bharath, B.1
Borkar, V.S.2
-
10
-
-
77958398767
-
The convergence of a class of double rank minimization algorithms, part i
-
Broyden, C. G. (1970a). The convergence of a class of double rank minimization algorithms, part I. Journal of the Institute of Mathematics and Applications, 6, 76-90.
-
(1970)
Journal of the Institute of Mathematics and Applications
, vol.6
, pp. 76-90
-
-
Broyden, C.G.1
-
11
-
-
19944366594
-
The convergence of a class of double rank minimization algorithms, part II
-
Broyden, C. G. (1970b). The convergence of a class of double rank minimization algorithms, part II. Journal of the Institute of Mathematics and Applications, 6, 222-231.
-
(1970)
Journal of the Institute of Mathematics and Applications
, vol.6
, pp. 222-231
-
-
Broyden, C.G.1
-
12
-
-
3342921861
-
On approximating weighted sums with exponentially many terms
-
Chawla, D., Li, L., & Scott, S. (2004). On approximating weighted sums with exponentially many terms. Journal of Computer and System Sciences, 69, 196-234.
-
(2004)
Journal of Computer and System Sciences
, vol.69
, pp. 196-234
-
-
Chawla, D.1
Li, L.2
Scott, S.3
-
13
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 3, 303-314.
-
(1989)
Mathematics of Control, Signals, and Systems
, vol.3
, pp. 303-314
-
-
Cybenko, G.1
-
14
-
-
0003264499
-
Variable metric method for minimization
-
Davidon, W. C. (1959). Variable metric method for minimization. AEC Res. and Dev. Report ANL-5990.
-
(1959)
AEC Res. and Dev. Report
, vol.ANL-5990
-
-
Davidon, W.C.1
-
15
-
-
0000979403
-
Sequential Monte Carlo methods to train neural network models
-
de Freitas, N., Niranjan, M., Gee, A. H., & Doucet, A. (2000). Sequential Monte Carlo methods to train neural network models. Neural Computation, 12, 955-993.
-
(2000)
Neural Computation
, vol.12
, pp. 955-993
-
-
De Freitas, N.1
Niranjan, M.2
Gee, A.H.3
Doucet, A.4
-
16
-
-
0033243858
-
Convergence of a stochastic approximation version of the em algorithm
-
Delyon, B., Lavielle, M., & Moulines, E. (1999). Convergence of a stochastic approximation version of the EM algorithm. Annals of Statistics, 27, 94-128.
-
(1999)
Annals of Statistics
, vol.27
, pp. 94-128
-
-
Delyon, B.1
Lavielle, M.2
Moulines, E.3
-
17
-
-
34548168330
-
-
Technical Report, Department of Mathematical Science, Norwegian University of Science and Technology
-
Erland, S. (2003). Adaptive Markov chain Monte Carlo review. Technical Report, Department of Mathematical Science, Norwegian University of Science and Technology.
-
(2003)
Adaptive Markov Chain Monte Carlo Review
-
-
Erland, S.1
-
19
-
-
0030616346
-
Analyzing a self-organizing algorithm
-
Flanagan, J. A. (1997). Analyzing a self-organizing algorithm. Neural Networks, 10, 875-883.
-
(1997)
Neural Networks
, vol.10
, pp. 875-883
-
-
Flanagan, J.A.1
-
20
-
-
0014825610
-
A new approach to variable metric algorithms
-
Fletcher, R. (1970). A new approach to variable metric algorithms. The Computer Journal, 13, 317-322.
-
(1970)
The Computer Journal
, vol.13
, pp. 317-322
-
-
Fletcher, R.1
-
22
-
-
0000387235
-
A rapidly convergent descent method for minimization
-
Fletcher, R., & Powell, M. J. D. (1963). A rapidly convergent descent method for minimization. The Computer Journal, 6, 163-168.
-
(1963)
The Computer Journal
, vol.6
, pp. 163-168
-
-
Fletcher, R.1
Powell, M.J.D.2
-
23
-
-
0024866495
-
On the approximate realization of continuous mappings by neural networks
-
Funahashi, K. (1989). On the approximate realization of continuous mappings by neural networks. Neural Networks, 2, 183-192.
-
(1989)
Neural Networks
, vol.2
, pp. 183-192
-
-
Funahashi, K.1
-
24
-
-
0021518209
-
Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images
-
Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
27
-
-
84966251980
-
A family of variable metric methods derived by variational means
-
Goldfarb, D. (1970). A family of variable metric methods derived by variational means. Mathematics of Computation, 24, 23-26.
-
(1970)
Mathematics of Computation
, vol.24
, pp. 23-26
-
-
Goldfarb, D.1
-
29
-
-
13144294075
-
A stochastic approximation algorithm with Markov chain Monte Carlo method for incomplete data estimation problems
-
Gu, M. G., & Kong, F. H. (1998). A stochastic approximation algorithm with Markov chain Monte Carlo method for incomplete data estimation problems. Proceedings of the National Academy of Sciences USA, 95, 7270-7274.
-
(1998)
Proceedings of the National Academy of Sciences USA
, vol.95
, pp. 7270-7274
-
-
Gu, M.G.1
Kong, F.H.2
-
30
-
-
0035532138
-
Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation
-
Gu, M. G., & Zhu, H. T. (2001). Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation. Journal of the Royal Statistical Society, Series B, 63, 339-355.
-
(2001)
Journal of the Royal Statistical Society, Series B
, vol.63
, pp. 339-355
-
-
Gu, M.G.1
Zhu, H.T.2
-
31
-
-
0008768014
-
Behavioral diversity, search and stochastic connectionist systems
-
Erlbaum Mahwah
-
Hanson, S. J. (1991). Behavioral diversity, search and stochastic connectionist systems. In M. Commons, S. Grossberg, & J. Staddon (Eds.), Neural network models of conditioning and action (pp. 295-345). Mahwah: Erlbaum.
-
(1991)
Neural Network Models of Conditioning and Action
, pp. 295-345
-
-
Hanson, S.J.1
Commons, M.2
Grossberg, S.3
Staddon, J.4
-
32
-
-
0016303884
-
Alopex: A stochastic method for determining visual receptive fields
-
Harth, E., & Tzanakou, E. (1974). Alopex: a stochastic method for determining visual receptive fields. Vision Research, 14, 1475-1482.
-
(1974)
Vision Research
, vol.14
, pp. 1475-1482
-
-
Harth, E.1
Tzanakou, E.2
-
34
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
37
-
-
0000688106
-
Asymptotic of the spectral gap with applications to the theory of simulated annealing
-
Holley, R. A., Kusuoka, S., & Stroock, D. (1989). Asymptotic of the spectral gap with applications to the theory of simulated annealing. Journal of Functional Analysis, 83, 333-347.
-
(1989)
Journal of Functional Analysis
, vol.83
, pp. 333-347
-
-
Holley, R.A.1
Kusuoka, S.2
Stroock, D.3
-
38
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
39
-
-
0025901642
-
Local minimization escape using thermodynamic properties of neural networks
-
Ingman, D., & Merlis, Y. (1991). Local minimization escape using thermodynamic properties of neural networks. Neural Networks, 4, 395-404.
-
(1991)
Neural Networks
, vol.4
, pp. 395-404
-
-
Ingman, D.1
Merlis, Y.2
-
40
-
-
0002734223
-
The Markov chain Monte Carlo method: An approach to approximate counting and integration
-
PWS Publishing Company Boston
-
Jerrum, M., & Sinclair, A. (1997). The Markov chain Monte Carlo method: an approach to approximate counting and integration. In D. S. Hochbaum (Ed.), Approximation algorithms for NP-hard problems (pp. 482-520). Boston: PWS Publishing Company.
-
(1997)
Approximation Algorithms for NP-hard Problems
, pp. 482-520
-
-
Jerrum, M.1
Sinclair, A.2
Hochbaum, D.S.3
-
43
-
-
26444479778
-
Optimization by simulated annealing
-
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671-680.
-
(1983)
Science
, vol.220
, pp. 671-680
-
-
Kirkpatrick, S.1
Gelatt, C.D.2
Vecchi, M.P.3
-
45
-
-
0002540180
-
Learning to tell two spirals apart
-
Kaufmann San Mateo
-
Lang, K. J., & Witbrock, M. J. (1989). Learning to tell two spirals apart. In D. Touretzky, G. Hinton, & T. Sejnowski (Eds.), Proceedings of the 1988 connectionist models (pp. 52-59). San Mateo: Kaufmann.
-
(1989)
Proceedings of the 1988 Connectionist Models
, pp. 52-59
-
-
Lang, K.J.1
Witbrock, M.J.2
Touretzky, D.3
Hinton, G.4
Sejnowski, T.5
-
46
-
-
0000873069
-
A method for the solution of certain non-linear problems in least squares
-
Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly Journal of Applied Mathematics, 2, 164-168.
-
(1944)
Quarterly Journal of Applied Mathematics
, vol.2
, pp. 164-168
-
-
Levenberg, K.1
-
47
-
-
0041825287
-
An effective Bayesian neural network classifier with a comparison study to support vector machine
-
Liang, F. (2003). An effective Bayesian neural network classifier with a comparison study to support vector machine. Neural Computation, 15, 1959-1989.
-
(2003)
Neural Computation
, vol.15
, pp. 1959-1989
-
-
Liang, F.1
-
48
-
-
29144446035
-
Generalized Wang-Landau algorithm for Monte Carlo computation
-
Liang, F. (2005a). Generalized Wang-Landau algorithm for Monte Carlo computation. Journal of the American Statistical Association, 100, 1311-1327.
-
(2005)
Journal of the American Statistical Association
, vol.100
, pp. 1311-1327
-
-
Liang, F.1
-
49
-
-
18444399665
-
Evidence evaluation for Bayesian neural networks using contour Monte Carlo
-
Liang, F. (2005b). Evidence evaluation for Bayesian neural networks using contour Monte Carlo. Neural Computation, 17, 1385-1410.
-
(2005)
Neural Computation
, vol.17
, pp. 1385-1410
-
-
Liang, F.1
-
50
-
-
1542573405
-
Real parameter evolutionary Monte Carlo with applications in Bayesian mixture models
-
Liang, F., & Wong, W. H. (2001). Real parameter evolutionary Monte Carlo with applications in Bayesian mixture models. Journal of the American Statistical Association, 96, 653-666.
-
(2001)
Journal of the American Statistical Association
, vol.96
, pp. 653-666
-
-
Liang, F.1
Wong, W.H.2
-
51
-
-
33947215681
-
Stochastic approximation in Monte Carlo computation
-
Liang, F., Liu, C., & Carroll, R. J. (2007). Stochastic approximation in Monte Carlo computation. Journal of the American Statistical Association, 102, 305-320.
-
(2007)
Journal of the American Statistical Association
, vol.102
, pp. 305-320
-
-
Liang, F.1
Liu, C.2
Carroll, R.J.3
-
52
-
-
0002704818
-
A practical Bayesian framework for backprop networks
-
MacKay, D. J. C. (1992a). A practical Bayesian framework for backprop networks. Neural Computation, 4, 448-472.
-
(1992)
Neural Computation
, vol.4
, pp. 448-472
-
-
MacKay, D.J.C.1
-
53
-
-
0000234257
-
The evidence framework applied to classification problems
-
MacKay, D. J. C. (1992b). The evidence framework applied to classification problems. Neural Computation, 4, 720-736.
-
(1992)
Neural Computation
, vol.4
, pp. 720-736
-
-
MacKay, D.J.C.1
-
55
-
-
0030551974
-
Rates of convergence of the Hastings and Metropolis algorithms
-
Mengersen, K. L., & Tweedie, R. L. (1996). Rates of convergence of the Hastings and Metropolis algorithms. The Annals of Statistics, 24, 101-121.
-
(1996)
The Annals of Statistics
, vol.24
, pp. 101-121
-
-
Mengersen, K.L.1
Tweedie, R.L.2
-
56
-
-
5744249209
-
Equation of state calculations by fast computing machines
-
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1091.
-
(1953)
Journal of Chemical Physics
, vol.21
, pp. 1087-1091
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
58
-
-
0028862414
-
Statistical analysis of self-organization
-
Mulier, F. M., & Cherkassky, V. S. (1995). Statistical analysis of self-organization. Neural Networks, 8, 717-727.
-
(1995)
Neural Networks
, vol.8
, pp. 717-727
-
-
Mulier, F.M.1
Cherkassky, V.S.2
-
59
-
-
0347128520
-
Issues in Bayesian analysis of neural network models
-
Müller, P., & Insua, D. R. (1998). Issues in Bayesian analysis of neural network models. Neural Computation, 10, 749-770.
-
(1998)
Neural Computation
, vol.10
, pp. 749-770
-
-
Müller, P.1
Insua, D.R.2
-
61
-
-
0742301621
-
Applications of simulated annealing to the back-propagation model improves convergence
-
Owen, C. B., & Abunawass, A. M. (1993). Applications of simulated annealing to the back-propagation model improves convergence. SPIE Proceedings, 1966, 269-276.
-
(1993)
SPIE Proceedings
, vol.1966
, pp. 269-276
-
-
Owen, C.B.1
Abunawass, A.M.2
-
65
-
-
0000646059
-
Learning internal representations by back-propagating errors
-
MIT Press Cambridge
-
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by back-propagating errors. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: explorations in the microstructure of cognition (Vol. 1, pp. 318-362). Cambridge: MIT Press.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
, vol.1
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
66
-
-
0040673435
-
Two timescale analysis of the Alopex algorithm for optimization
-
Sastry, P. S., Magesh, M., & Unnikrishnan, K. P. (2002). Two timescale analysis of the Alopex algorithm for optimization. Neural Computation, 14, 2729-2750.
-
(2002)
Neural Computation
, vol.14
, pp. 2729-2750
-
-
Sastry, P.S.1
Magesh, M.2
Unnikrishnan, K.P.3
-
67
-
-
0000547544
-
A useful convergence theorem for probability distributions
-
Scheffé, H. (1947). A useful convergence theorem for probability distributions. Annals of Mathematical Statistics, 18, 434-438.
-
(1947)
Annals of Mathematical Statistics
, vol.18
, pp. 434-438
-
-
Scheffé, H.1
-
68
-
-
84968497764
-
Conditioning of quasi-Newton methods for function minimization
-
Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation, 24, 647-656.
-
(1970)
Mathematics of Computation
, vol.24
, pp. 647-656
-
-
Shanno, D.F.1
-
69
-
-
0024111497
-
Using the ADAP learning algorithm to forecast the onset of diabetes mellitus
-
IEEE Computer Society Press Los Alamitos
-
Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C., & Johannes, R. S. (1988). Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In R. A. Greenes (Ed.), Proceedings pf the symposium on computer applications in medical care (pp. 261-265). Los Alamitos: IEEE Computer Society Press.
-
(1988)
Proceedings Pf the Symposium on Computer Applications in Medical Care
, pp. 261-265
-
-
Smith, J.W.1
Everhart, J.E.2
Dickson, W.C.3
Knowler, W.C.4
Johannes, R.S.5
Greenes, R.A.6
-
70
-
-
0026839090
-
Multivariate stochastic approximation using a simultaneous perturbation gradient approximation
-
Spall, J. C. (1992). Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Transactions on Automatic Control, 37, 332-341.
-
(1992)
IEEE Transactions on Automatic Control
, vol.37
, pp. 332-341
-
-
Spall, J.C.1
-
72
-
-
0042879436
-
An algorithm of supervised learning for multilayer neural networks
-
Tang, Z., Wang, X., Tamura, H., & Ishii, M. (2003). An algorithm of supervised learning for multilayer neural networks. Neural Computation, 15, 1125-1142.
-
(2003)
Neural Computation
, vol.15
, pp. 1125-1142
-
-
Tang, Z.1
Wang, X.2
Tamura, H.3
Ishii, M.4
-
73
-
-
0002855385
-
Scaling relations in back-propagation learning
-
Tesauro, G., & Janssens, B. (1988). Scaling relations in back-propagation learning. Complex System, 2, 39-44.
-
(1988)
Complex System
, vol.2
, pp. 39-44
-
-
Tesauro, G.1
Janssens, B.2
-
75
-
-
0024124040
-
Factors influencing learning by back-propagation
-
IEEE Press New York
-
von Lehmen, A., Paek, E. G., Liao, P. F., Marrakchi, A., & Patel, J. S. (1988). Factors influencing learning by back-propagation. In Proceedings of IEEE international conference on neural networks (pp. 335-341). New York: IEEE Press.
-
(1988)
Proceedings of IEEE International Conference on Neural Networks
, pp. 335-341
-
-
Von Lehmen, A.1
Paek, E.G.2
Liao, P.F.3
Marrakchi, A.4
Patel, J.S.5
-
76
-
-
6644221271
-
Efficient, multiple-range random walk algorithm to calculate the density of states
-
Wang, F., & Landau, D. P. (2001). Efficient, multiple-range random walk algorithm to calculate the density of states. Physical Review Letters, 86, 2050-2053.
-
(2001)
Physical Review Letters
, vol.86
, pp. 2050-2053
-
-
Wang, F.1
Landau, D.P.2
-
77
-
-
0033333990
-
Training neural networks with additive noise in the desired signal
-
Wang, C., & Principe, J. C. (1999). Training neural networks with additive noise in the desired signal. IEEE Transactions on Neural Networks, 10, 1511-1517.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, pp. 1511-1517
-
-
Wang, C.1
Principe, J.C.2
-
79
-
-
0033285473
-
On the use of simultaneous perturbation stochastic approximation for neural network training
-
San Diego, CA
-
Wouwer, A. V., Renotte, C., & Remy, M. (1999) On the use of simultaneous perturbation stochastic approximation for neural network training. In Proceedings of the American control conference (pp. 388-392), San Diego, CA.
-
(1999)
Proceedings of the American Control Conference
, pp. 388-392
-
-
Wouwer, A.V.1
Renotte, C.2
Remy, M.3
|