-
1
-
-
0008752912
-
A statistical analysis of the effect of noise injection during neural network training
-
Abunawass, A. M., & Owen, C. B. (1993). A statistical analysis of the effect of noise injection during neural network training. SPIE Proceedings, 1966, 362-371.
-
(1993)
SPIE Proceedings
, vol.1966
, pp. 362-371
-
-
Abunawass, A.M.1
Owen, C.B.2
-
2
-
-
0026410053
-
Simulated annealing approach in backpropagation
-
Amato, S., Apolloni, B., Caporali, G., Madesani, U., & Zanaboni, A. (1991). Simulated annealing approach in backpropagation. Neurocomputing, 3, 207-220.
-
(1991)
Neurocomputing
, vol.3
, pp. 207-220
-
-
Amato, S.1
Apolloni, B.2
Caporali, G.3
Madesani, U.4
Zanaboni, A.5
-
3
-
-
0000052978
-
BFGS optimization for faster and automated supervised learning
-
Paris, France. Dordrecht: Kluwer
-
Battiti, R., & Masulli, F. (1990). BFGS optimization for faster and automated supervised learning. In Proceedings of the International Neural Network Conference (pp. 757-760). Paris, France. Dordrecht: Kluwer.
-
(1990)
Proceedings of the International Neural Network Conference
, pp. 757-760
-
-
Battiti, R.1
Masulli, F.2
-
4
-
-
0032144731
-
A modified back-propagation method to avoid false local minima
-
Fukuoka, Y., Matsuki, H., Minamitani, H., & Ishida, A. (1998). A modified back-propagation method to avoid false local minima. Neural Networks, 11, 1059-1072.
-
(1998)
Neural Networks
, vol.11
, pp. 1059-1072
-
-
Fukuoka, Y.1
Matsuki, H.2
Minamitani, H.3
Ishida, A.4
-
5
-
-
0008768014
-
Behavioral diversity, search and stochastic connectionist systems
-
M. Commons, S. Grossberg, & J. Staddon (Eds.). Mahwah, NJ: Erlbaum
-
Hanson, S. J. (1991). Behavioral diversity, search and stochastic connectionist systems. In M. Commons, S. Grossberg, & J. Staddon (Eds.), Neural network models of conditioning and action (pp. 295-345). Mahwah, NJ: Erlbaum.
-
(1991)
Neural Network Models of Conditioning and Action
, pp. 295-345
-
-
Hanson, S.J.1
-
7
-
-
0000999440
-
Learning and relearning in Boltzmann machines
-
D. E. Rumelhart & J. L. McClelland (Eds.). Cambridge, MA: MIT Press
-
Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1, pp. 282-317). Cambridge, MA: MIT Press.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
, vol.1
, pp. 282-317
-
-
Hinton, G.E.1
Sejnowski, T.J.2
-
9
-
-
0025901642
-
Local minimization escape using thermodynamic properties of neural networks
-
Ingman, D., & Merlis, Y. (1991). Local minimization escape using thermodynamic properties of neural networks. Neural Networks, 4, 395-404.
-
(1991)
Neural Networks
, vol.4
, pp. 395-404
-
-
Ingman, D.1
Merlis, Y.2
-
10
-
-
0024715766
-
An adaptive least squares algorithm for efficient training of artificial neural networks
-
Kollias, S., & Anastassiou, D. (1989). An adaptive least squares algorithm for efficient training of artificial neural networks. IEEE Transactions on Circuits and Systems, 36, 1092-1101.
-
(1989)
IEEE Transactions on Circuits and Systems
, vol.36
, pp. 1092-1101
-
-
Kollias, S.1
Anastassiou, D.2
-
11
-
-
0002290223
-
Efficient parallel learning algorithms for neural networks
-
D. S. Touretzky (Ed.). San Mateo, CA: Morgan Kaufmann
-
Kramer, A. H., & Sangiovanni-Vincentelli, A. (1988). Efficient parallel learning algorithms for neural networks. In D. S. Touretzky (Ed.), Advances in neural information processing systems, 1 (pp. 75-89). San Mateo, CA: Morgan Kaufmann.
-
(1988)
Advances in Neural Information Processing Systems
, vol.1
, pp. 75-89
-
-
Kramer, A.H.1
Sangiovanni-Vincentelli, A.2
-
12
-
-
0742301621
-
Application of simulated annealing to the backpropagation model improves convergence
-
Owen, C. B., & Abunawass, A. M. (1993). Application of simulated annealing to the backpropagation model improves convergence, SPIE Proceedings, 1966, 269-276.
-
(1993)
SPIE Proceedings
, vol.1966
, pp. 269-276
-
-
Owen, C.B.1
Abunawass, A.M.2
-
13
-
-
0000646059
-
Learning internal representations by back-propagating errors
-
D. E. Rumelhart & J. L. McClelland (Eds.). Cambridge, MA: MIT Press
-
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by back-propagating errors. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1, pp. 318-362). Cambridge, MA: MIT Press.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
, vol.1
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
15
-
-
0024704073
-
Classification of radar returns from the ionosphere using neural networks
-
Sigillito, V. G., Wing, S. P., Hutton, L. V., & Baker, K. B. (1989). Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest, 10, 262-266.
-
(1989)
Johns Hopkins APL Technical Digest
, vol.10
, pp. 262-266
-
-
Sigillito, V.G.1
Wing, S.P.2
Hutton, L.V.3
Baker, K.B.4
-
16
-
-
0024124040
-
Factors influencing learning by backpropagation
-
New York: IEEE Press
-
Von Lehmen, A., Paek, E.G., Liao, P. F., Marrakchi, A., & Patel, J. S. (1988). Factors influencing learning by backpropagation. In Proceedings of IEEE International Conference on Neural Networks (pp. 335-341). New York: IEEE Press.
-
(1988)
Proceedings of IEEE International Conference on Neural Networks
, pp. 335-341
-
-
Von Lehmen, A.1
Paek, E.G.2
Liao, P.F.3
Marrakchi, A.4
Patel, J.S.5
-
17
-
-
0033333990
-
Training neural networks with additive noise in the desired signal
-
Wang, C., & Principe, J. C. (1999). Training neural networks with additive noise in the desired signal. IEEE Transactions on Neural Networks, 10, 1511-1517.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, pp. 1511-1517
-
-
Wang, C.1
Principe, J.C.2
-
18
-
-
0023541050
-
Learning algorithms for connectionist networks: Applied gradient methods of nonlinear optimization
-
New York: IEEE Press
-
Watrous, R. L. (1987). Learning algorithms for connectionist networks: Applied gradient methods of nonlinear optimization. In Proceedings of the International Conference on Neural Networks (pp. 619-627). New York: IEEE Press.
-
(1987)
Proceedings of the International Conference on Neural Networks
, pp. 619-627
-
-
Watrous, R.L.1
|