메뉴 건너뛰기




Volumn 17, Issue 6, 2005, Pages 1385-1410

Evidence evaluation for bayesian neural networks using contour Monte Carlo

Author keywords

[No Author keywords available]

Indexed keywords


EID: 18444399665     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/0899766053630323     Document Type: Article
Times cited : (6)

References (35)
  • 1
    • 0000106469 scopus 로고
    • Multicanonical algorithms for 1st order phase-transitions
    • Berg, B. A., & Neuhaus, T. (1991). Multicanonical algorithms for 1st order phase-transitions. Physics Letters B, 267, 249-253.
    • (1991) Physics Letters B , vol.267 , pp. 249-253
    • Berg, B.A.1    Neuhaus, T.2
  • 7
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks: A comparative study using the airline data
    • Faraway, J., & Chatfield, C. (1998). Time series forecasting with neural networks: A comparative study using the airline data. Appl. Statist., 47, 231-250.
    • (1998) Appl. Statist. , vol.47 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 8
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problem
    • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problem. Annals of Eugenics, 7, 179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 9
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
    • Gelman, A., & Meng, X. L. (1998). Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science, 13, 163-185.
    • (1998) Statistical Science , vol.13 , pp. 163-185
    • Gelman, A.1    Meng, X.L.2
  • 11
    • 0003568766 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 57, 97-109.
    • (1995) Biometrika , vol.57 , pp. 97-109
    • Green, P.J.1
  • 12
    • 0000281374 scopus 로고
    • Representations of knowledge in complex systems (with discussion)
    • Grenander, U., & Miller, M. (1994). Representations of knowledge in complex systems (with discussion). J. Roy. Statist. Soc. B, 56, 549-603.
    • (1994) J. Roy. Statist. Soc. B , vol.56 , pp. 549-603
    • Grenander, U.1    Miller, M.2
  • 13
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 14
    • 70349119250 scopus 로고
    • Regression and time series model selection in small samples
    • Hurvich, C. M., & Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika, 76, 297-307.
    • (1989) Biometrika , vol.76 , pp. 297-307
    • Hurvich, C.M.1    Tsai, C.L.2
  • 15
    • 1542321252 scopus 로고    scopus 로고
    • Structural learning and rule discovery
    • I. Cloeth & J. M. Zurada (Eds.), MA: MIT Press. Cambridge
    • Ishikawa, M. (2000). Structural learning and rule discovery. In I. Cloeth & J. M. Zurada (Eds.), Knowledge-based neurocomputing (pp. 153-206). Cambridge, MA: MIT Press.
    • (2000) Knowledge-based Neurocomputing , pp. 153-206
    • Ishikawa, M.1
  • 19
    • 2342642876 scopus 로고    scopus 로고
    • Annealing contour Monte Carlo for structure optimization in an off-lattice protein model
    • Liang, F. (2004). Annealing contour Monte Carlo for structure optimization in an off-lattice protein model. Journal of Chemical Physics, 120, 6756-6763.
    • (2004) Journal of Chemical Physics , vol.120 , pp. 6756-6763
    • Liang, F.1
  • 21
    • 0000234257 scopus 로고
    • The evidence framework applied to classification problems
    • MacKay, D. J. C. (1992a). The evidence framework applied to classification problems. Neural Computation, 4, 720-736.
    • (1992) Neural Computation , vol.4 , pp. 720-736
    • MacKay, D.J.C.1
  • 22
    • 0002704818 scopus 로고
    • A practical Bayesian framework for back-propagation networks
    • MacKay, D. J. C. (1992b). A practical Bayesian framework for back-propagation networks. Neural Computation, 4, 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • MacKay, D.J.C.1
  • 23
    • 0007826152 scopus 로고
    • Bayesian non-linear modeling for the 1993 energy prediction competition
    • G. Heidbreder (Ed.), Dordrecht: Kluwer
    • MacKay, D. J. C. (1995). Bayesian non-linear modeling for the 1993 energy prediction competition. In G. Heidbreder (Ed.), Maximum entropy and Bayesian methods, Santa Barbara 1993. Dordrecht: Kluwer.
    • (1995) Maximum Entropy and Bayesian Methods, Santa Barbara 1993
    • MacKay, D.J.C.1
  • 25
    • 0347128520 scopus 로고    scopus 로고
    • Issues in Bayesian analysis of neural network models
    • Müller, P., & Insua, D. R. (1998). Issues in Bayesian analysis of neural network models. Neural Computation, 10, 749-770.
    • (1998) Neural Computation , vol.10 , pp. 749-770
    • Müller, P.1    Insua, D.R.2
  • 28
    • 0032803502 scopus 로고    scopus 로고
    • Bayesian neural networks for classification: How useful is the evidence framework?
    • Penny, W. D., & Roberts, S. J. (1999). Bayesian neural networks for classification: How useful is the evidence framework? Neural Networks, 12, 877-892.
    • (1999) Neural Networks , vol.12 , pp. 877-892
    • Penny, W.D.1    Roberts, S.J.2
  • 29
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble methods for hybrid neural networks
    • R. J. Mammone (Ed.), London: Chapman & Hall
    • Perrone, M. P., & Cooper, L. N. (1993). When networks disagree: Ensemble methods for hybrid neural networks. In R. J. Mammone (Ed.), Artificial neural networks for speech and vision (pp. 126-142). London: Chapman & Hall.
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 30
    • 0002013327 scopus 로고    scopus 로고
    • Bayesian model comparison via jump diffusions
    • W. R. Gilks, S. T. Richardson, & D. J. Spiegelhalter (Eds.), London: Chapman & Hall
    • Phillips, D. B., & Smith, A. F. M. (1996). Bayesian model comparison via jump diffusions. In W. R. Gilks, S. T. Richardson, & D. J. Spiegelhalter (Eds.), Markov chain Monte Carlo in practice (pp. 215-240). London: Chapman & Hall.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 215-240
    • Phillips, D.B.1    Smith, A.F.M.2
  • 32
    • 84963178774 scopus 로고
    • Further analysis of the data by Akaike's information criterion and the finite corrections
    • Sugiura, N. (1978). Further analysis of the data by Akaike's information criterion and the finite corrections. Communications in Statistics - Theory and Methods, 7, 13-26.
    • (1978) Communications in Statistics - Theory and Methods , vol.7 , pp. 13-26
    • Sugiura, N.1
  • 33
    • 0029754435 scopus 로고
    • A review of Bayesian neural networks with an application to near infrared spectroscopy
    • Thodberg, H. H. (1995). A review of Bayesian neural networks with an application to near infrared spectroscopy. IEEE Transactions on Neural Networks, 7, 56-72.
    • (1995) IEEE Transactions on Neural Networks , vol.7 , pp. 56-72
    • Thodberg, H.H.1
  • 34
    • 0001905135 scopus 로고
    • On the asymptotic behavior of posterior distributions
    • Walker, A. M. (1969). On the asymptotic behavior of posterior distributions. Journal of the Royal Statistical Society B, 31, 80-88.
    • (1969) Journal of the Royal Statistical Society B , vol.31 , pp. 80-88
    • Walker, A.M.1
  • 35
    • 6644221271 scopus 로고    scopus 로고
    • Efficient, multiple-range random walk algorithm to calculate the density of states
    • Wang, F., & Landau, D. P. (2001). Efficient, multiple-range random walk algorithm to calculate the density of states. Physical Review Letters, 86, 2050-2053.
    • (2001) Physical Review Letters , vol.86 , pp. 2050-2053
    • Wang, F.1    Landau, D.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.