-
1
-
-
0000106469
-
Multicanonical algorithms for 1st order phase-transitions
-
Berg, B. A., & Neuhaus, T. (1991). Multicanonical algorithms for 1st order phase-transitions. Physics Letters B, 267, 249-253.
-
(1991)
Physics Letters B
, vol.267
, pp. 249-253
-
-
Berg, B.A.1
Neuhaus, T.2
-
6
-
-
0004224632
-
-
New York: Wiley
-
Dénison, D., Holmes, C., Mallick, B., & Smith, A. F. M. (2002). Bayesian methods for nonlinear classification and regression. New York: Wiley.
-
(2002)
Bayesian Methods for Nonlinear Classification and Regression
-
-
Dénison, D.1
Holmes, C.2
Mallick, B.3
Smith, A.F.M.4
-
7
-
-
0039988139
-
Time series forecasting with neural networks: A comparative study using the airline data
-
Faraway, J., & Chatfield, C. (1998). Time series forecasting with neural networks: A comparative study using the airline data. Appl. Statist., 47, 231-250.
-
(1998)
Appl. Statist.
, vol.47
, pp. 231-250
-
-
Faraway, J.1
Chatfield, C.2
-
8
-
-
0000764772
-
The use of multiple measurements in taxonomic problem
-
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problem. Annals of Eugenics, 7, 179-188.
-
(1936)
Annals of Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.A.1
-
9
-
-
0000736067
-
Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
-
Gelman, A., & Meng, X. L. (1998). Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science, 13, 163-185.
-
(1998)
Statistical Science
, vol.13
, pp. 163-185
-
-
Gelman, A.1
Meng, X.L.2
-
10
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
-
Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721-741.
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
11
-
-
0003568766
-
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
-
Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 57, 97-109.
-
(1995)
Biometrika
, vol.57
, pp. 97-109
-
-
Green, P.J.1
-
12
-
-
0000281374
-
Representations of knowledge in complex systems (with discussion)
-
Grenander, U., & Miller, M. (1994). Representations of knowledge in complex systems (with discussion). J. Roy. Statist. Soc. B, 56, 549-603.
-
(1994)
J. Roy. Statist. Soc. B
, vol.56
, pp. 549-603
-
-
Grenander, U.1
Miller, M.2
-
13
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
14
-
-
70349119250
-
Regression and time series model selection in small samples
-
Hurvich, C. M., & Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika, 76, 297-307.
-
(1989)
Biometrika
, vol.76
, pp. 297-307
-
-
Hurvich, C.M.1
Tsai, C.L.2
-
15
-
-
1542321252
-
Structural learning and rule discovery
-
I. Cloeth & J. M. Zurada (Eds.), MA: MIT Press. Cambridge
-
Ishikawa, M. (2000). Structural learning and rule discovery. In I. Cloeth & J. M. Zurada (Eds.), Knowledge-based neurocomputing (pp. 153-206). Cambridge, MA: MIT Press.
-
(2000)
Knowledge-based Neurocomputing
, pp. 153-206
-
-
Ishikawa, M.1
-
19
-
-
2342642876
-
Annealing contour Monte Carlo for structure optimization in an off-lattice protein model
-
Liang, F. (2004). Annealing contour Monte Carlo for structure optimization in an off-lattice protein model. Journal of Chemical Physics, 120, 6756-6763.
-
(2004)
Journal of Chemical Physics
, vol.120
, pp. 6756-6763
-
-
Liang, F.1
-
21
-
-
0000234257
-
The evidence framework applied to classification problems
-
MacKay, D. J. C. (1992a). The evidence framework applied to classification problems. Neural Computation, 4, 720-736.
-
(1992)
Neural Computation
, vol.4
, pp. 720-736
-
-
MacKay, D.J.C.1
-
22
-
-
0002704818
-
A practical Bayesian framework for back-propagation networks
-
MacKay, D. J. C. (1992b). A practical Bayesian framework for back-propagation networks. Neural Computation, 4, 448-472.
-
(1992)
Neural Computation
, vol.4
, pp. 448-472
-
-
MacKay, D.J.C.1
-
23
-
-
0007826152
-
Bayesian non-linear modeling for the 1993 energy prediction competition
-
G. Heidbreder (Ed.), Dordrecht: Kluwer
-
MacKay, D. J. C. (1995). Bayesian non-linear modeling for the 1993 energy prediction competition. In G. Heidbreder (Ed.), Maximum entropy and Bayesian methods, Santa Barbara 1993. Dordrecht: Kluwer.
-
(1995)
Maximum Entropy and Bayesian Methods, Santa Barbara 1993
-
-
MacKay, D.J.C.1
-
24
-
-
5744249209
-
Equation of state calculations by fast computing machines
-
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1091.
-
(1953)
Journal of Chemical Physics
, vol.21
, pp. 1087-1091
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
25
-
-
0347128520
-
Issues in Bayesian analysis of neural network models
-
Müller, P., & Insua, D. R. (1998). Issues in Bayesian analysis of neural network models. Neural Computation, 10, 749-770.
-
(1998)
Neural Computation
, vol.10
, pp. 749-770
-
-
Müller, P.1
Insua, D.R.2
-
28
-
-
0032803502
-
Bayesian neural networks for classification: How useful is the evidence framework?
-
Penny, W. D., & Roberts, S. J. (1999). Bayesian neural networks for classification: How useful is the evidence framework? Neural Networks, 12, 877-892.
-
(1999)
Neural Networks
, vol.12
, pp. 877-892
-
-
Penny, W.D.1
Roberts, S.J.2
-
29
-
-
0000926506
-
When networks disagree: Ensemble methods for hybrid neural networks
-
R. J. Mammone (Ed.), London: Chapman & Hall
-
Perrone, M. P., & Cooper, L. N. (1993). When networks disagree: Ensemble methods for hybrid neural networks. In R. J. Mammone (Ed.), Artificial neural networks for speech and vision (pp. 126-142). London: Chapman & Hall.
-
(1993)
Artificial Neural Networks for Speech and Vision
, pp. 126-142
-
-
Perrone, M.P.1
Cooper, L.N.2
-
30
-
-
0002013327
-
Bayesian model comparison via jump diffusions
-
W. R. Gilks, S. T. Richardson, & D. J. Spiegelhalter (Eds.), London: Chapman & Hall
-
Phillips, D. B., & Smith, A. F. M. (1996). Bayesian model comparison via jump diffusions. In W. R. Gilks, S. T. Richardson, & D. J. Spiegelhalter (Eds.), Markov chain Monte Carlo in practice (pp. 215-240). London: Chapman & Hall.
-
(1996)
Markov Chain Monte Carlo in Practice
, pp. 215-240
-
-
Phillips, D.B.1
Smith, A.F.M.2
-
32
-
-
84963178774
-
Further analysis of the data by Akaike's information criterion and the finite corrections
-
Sugiura, N. (1978). Further analysis of the data by Akaike's information criterion and the finite corrections. Communications in Statistics - Theory and Methods, 7, 13-26.
-
(1978)
Communications in Statistics - Theory and Methods
, vol.7
, pp. 13-26
-
-
Sugiura, N.1
-
33
-
-
0029754435
-
A review of Bayesian neural networks with an application to near infrared spectroscopy
-
Thodberg, H. H. (1995). A review of Bayesian neural networks with an application to near infrared spectroscopy. IEEE Transactions on Neural Networks, 7, 56-72.
-
(1995)
IEEE Transactions on Neural Networks
, vol.7
, pp. 56-72
-
-
Thodberg, H.H.1
-
34
-
-
0001905135
-
On the asymptotic behavior of posterior distributions
-
Walker, A. M. (1969). On the asymptotic behavior of posterior distributions. Journal of the Royal Statistical Society B, 31, 80-88.
-
(1969)
Journal of the Royal Statistical Society B
, vol.31
, pp. 80-88
-
-
Walker, A.M.1
-
35
-
-
6644221271
-
Efficient, multiple-range random walk algorithm to calculate the density of states
-
Wang, F., & Landau, D. P. (2001). Efficient, multiple-range random walk algorithm to calculate the density of states. Physical Review Letters, 86, 2050-2053.
-
(2001)
Physical Review Letters
, vol.86
, pp. 2050-2053
-
-
Wang, F.1
Landau, D.P.2
|