-
1
-
-
0030955263
-
Understanding the recognition of protein structural classes by amino acid composition
-
Bahar, I., Atilgan, A. R., Jemigan, R. L., & Erman, B. (1997). Understanding the recognition of protein structural classes by amino acid composition. Proteins: Struc., Func., and Genetics, 29, 172-185.
-
(1997)
Proteins: Struc., Func., and Genetics
, vol.29
, pp. 172-185
-
-
Bahar, I.1
Atilgan, A.R.2
Jemigan, R.L.3
Erman, B.4
-
2
-
-
0026860799
-
Robust linear programming discrimination of two linearly inseparable sets
-
Bennett, K. P., & Mangasarian, O. L. (1992). Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1, 23-34.
-
(1992)
Optimization Methods and Software
, vol.1
, pp. 23-34
-
-
Bennett, K.P.1
Mangasarian, O.L.2
-
4
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
San Mateo, CA: Morgan Kaufmann
-
Boser, B., Guyon, I., & Vapnik, V. (1992). A training algorithm for optimal margin classifiers. In Fifth Annual Conference on Computational Learning Theory (pp. 142-152). San Mateo, CA: Morgan Kaufmann.
-
(1992)
Fifth Annual Conference on Computational Learning Theory
, pp. 142-152
-
-
Boser, B.1
Guyon, I.2
Vapnik, V.3
-
5
-
-
0000245743
-
Statistical modeling - The two cultures
-
Breiman, L. (2002). Statistical modeling - the two cultures. Statistical Science, 16, 199-215.
-
(2002)
Statistical Science
, vol.16
, pp. 199-215
-
-
Breiman, L.1
-
6
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data by using support vector machines
-
Brown, M. P. S., Grundy, W. N., Lin, D., Cristianini, N., Sugnet, C. W., Furey, T. S., M. A. Jr., & Haussler, D. (2000). Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci, USA, 97, 262-267.
-
(2000)
Proc. Natl. Acad. Sci, USA
, vol.97
, pp. 262-267
-
-
Brown, M.P.S.1
Grundy, W.N.2
Lin, D.3
Cristianini, N.4
Sugnet, C.W.5
Furey T.S.M.A., Jr.6
Haussler, D.7
-
7
-
-
0000667930
-
Training v-support vector classifiers: Theory and algorithms
-
Chang, C. C., & Lin, C. J. (2001). Training v-support vector classifiers: Theory and algorithms. Neural Computation, 13, 2119-2147.
-
(2001)
Neural Computation
, vol.13
, pp. 2119-2147
-
-
Chang, C.C.1
Lin, C.J.2
-
8
-
-
0033554601
-
A key driving force in determination of protein structure classes
-
Chou, K. C. (1999). A key driving force in determination of protein structure classes. Biochem. Biophys. Res, Commun., 264, 216-224.
-
(1999)
Biochem. Biophys. Res, Commun.
, vol.264
, pp. 216-224
-
-
Chou, K.C.1
-
9
-
-
0034285487
-
Review: Prediction of protein structural classes and subcellular location
-
Chou, K. C. (2001). Review: Prediction of protein structural classes and subcellular location. Current Protein and Peptide Science, 1, 171-208.
-
(2001)
Current Protein and Peptide Science
, vol.1
, pp. 171-208
-
-
Chou, K.C.1
-
10
-
-
34249753618
-
Support vector networks
-
Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273-297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
11
-
-
0035014847
-
Multi-class protein fold recognition using support vector machines and neural networks
-
Ding, C. H. Q., & Dubchak, I. (2001). Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 17, 349-358.
-
(2001)
Bioinformatics
, vol.17
, pp. 349-358
-
-
Ding, C.H.Q.1
Dubchak, I.2
-
14
-
-
0000954353
-
Efficient metropolis jumping rules
-
J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), New York: Oxford University Press
-
Gelman, A., Roberts, R. O., & Gilks, W. R. (1996). Efficient metropolis jumping rules. In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian Statistics, 5. New York: Oxford University Press.
-
(1996)
Bayesian Statistics
, vol.5
-
-
Gelman, A.1
Roberts, R.O.2
Gilks, W.R.3
-
16
-
-
84950437936
-
Annealing Markov chain Monte Carlo with applications to ancestral inference
-
Geyer, C. J., & Thompson, E. A. (1995). Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Amer. Statist. Assoc., 90, 909-920.
-
(1995)
J. Amer. Statist. Assoc.
, vol.90
, pp. 909-920
-
-
Geyer, C.J.1
Thompson, E.A.2
-
17
-
-
77956889087
-
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
-
Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732.
-
(1995)
Biometrika
, vol.82
, pp. 711-732
-
-
Green, P.J.1
-
18
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
19
-
-
0030516672
-
Exchange Monte Carlo method and application to spin glass simulations
-
Hukushima, K., & Nemoto, K. (1996) Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn., 65, 1604-1608.
-
(1996)
J. Phys. Soc. Jpn.
, vol.65
, pp. 1604-1608
-
-
Hukushima, K.1
Nemoto, K.2
-
20
-
-
0032787276
-
An empirical evaluation of Bayesian sampling with hybrid Monte Carlo for training neural network classifiers
-
Husmeier, D., Penny, W. D., & Roberts, S. J. (1999). An empirical evaluation of Bayesian sampling with hybrid Monte Carlo for training neural network classifiers. Neural Networks, 12, 677-705.
-
(1999)
Neural Networks
, vol.12
, pp. 677-705
-
-
Husmeier, D.1
Penny, W.D.2
Roberts, S.J.3
-
21
-
-
0000992191
-
Approximate Bayesian factors and orthogonal parameters, with applications to testing equality of two binomial proportions
-
Kass, R. E., & Vaidyanathan, S. (1992). Approximate Bayesian factors and orthogonal parameters, with applications to testing equality of two binomial proportions. /. Royal Statist. Soc., B, 129-144.
-
(1992)
J. Royal Statist. Soc., B
, pp. 129-144
-
-
Kass, R.E.1
Vaidyanathan, S.2
-
22
-
-
0003250435
-
Single-layer learning revisited: A stepwise procedure for building and training a neural network
-
J. Fogelman (Ed.), Berlin: Springer-Verlag
-
Knerr, S., Personnaz, L., & Dreyfus, G. (1990). Single-layer learning revisited: A stepwise procedure for building and training a neural network. In J. Fogelman (Ed.), Neurocomputing: Algorithms, architectures and applications. Berlin: Springer-Verlag.
-
(1990)
Neurocomputing: Algorithms, Architectures and Applications
-
-
Knerr, S.1
Personnaz, L.2
Dreyfus, G.3
-
23
-
-
0000749354
-
Neural network ensembles, cross validation, and active learning
-
J. D. Cowan, D. Touretzky, & J. Alspector (Eds.), Cambridge, MA: MIT Press
-
Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active learning. In J. D. Cowan, D. Touretzky, & J. Alspector (Eds.), Advances in neural information processing systems, 7. Cambridge, MA: MIT Press.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
-
-
Krogh, A.1
Vedelsby, J.2
-
24
-
-
0017309766
-
Structural patterns in globular proteins
-
Levitt, M., & Chothia, C. (1976). Structural patterns in globular proteins. Nature, 261, 552-557.
-
(1976)
Nature
, vol.261
, pp. 552-557
-
-
Levitt, M.1
Chothia, C.2
-
25
-
-
0034403006
-
p model sampling and change point problem
-
p model sampling and change point problem. Statistica Sinica, 10, 317-342.
-
(2000)
Statistica Sinica
, vol.10
, pp. 317-342
-
-
Liang, F.1
Wong, W.H.2
-
26
-
-
0002704818
-
A practical Bayesian framework for backprop networks
-
MacKay, D. J. C. (1992). A practical Bayesian framework for backprop networks. Neural Computation, 4, 448-472.
-
(1992)
Neural Computation
, vol.4
, pp. 448-472
-
-
Mackay, D.J.C.1
-
27
-
-
0002039637
-
Cancer diagnosis via linear programming
-
Mangasarian, O. L., & Wolberg, W. H. (1990). Cancer diagnosis via linear programming. SIAM News, 23, 1-18.
-
(1990)
SIAM News
, vol.23
, pp. 1-18
-
-
Mangasarian, O.L.1
Wolberg, W.H.2
-
28
-
-
0042207778
-
-
Tech. Rep. Berlin: Max-Planck-Institute for Molecular Genetics, Computational Molecular Biology
-
Markowetz, F., Edler, L., & Vingron, M. (2002). Support vector machines for protein fold class prediction (Tech. Rep.). Berlin: Max-Planck-Institute for Molecular Genetics, Computational Molecular Biology.
-
(2002)
Support Vector Machines for Protein Fold Class Prediction
-
-
Markowetz, F.1
Edler, L.2
Vingron, M.3
-
29
-
-
0001500115
-
Functions of positive and negative type, and their connection with the theory of integral equations
-
Mercer, J. (1909). Functions of positive and negative type, and their connection with the theory of integral equations. Transactions of the London Philospohical Society A, 209, 819-835.
-
(1909)
Transactions of the London Philospohical Society A
, vol.209
, pp. 819-835
-
-
Mercer, J.1
-
30
-
-
5744249209
-
Equation of state calculations by fast computing machines
-
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1091.
-
(1953)
Journal of Chemical Physics
, vol.21
, pp. 1087-1091
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
31
-
-
0345959413
-
-
Tech. Rep. Durham, NC: Institute of Statistics and Decision Sciences, Duke University
-
Müller, P. (1993). Alternatives to the Gibbsa sampling scheme (Tech. Rep.). Durham, NC: Institute of Statistics and Decision Sciences, Duke University.
-
(1993)
Alternatives to the Gibbsa Sampling Scheme
-
-
Müller, P.1
-
33
-
-
0000926506
-
When networks disagree: Ensemble methods for hybrid neural networks
-
R. J. Mammone (Ed.), London: Chapman-Hall
-
Perrone, M. P., & Cooper, L. N. (1993). When networks disagree: Ensemble methods for hybrid neural networks. In R. J. Mammone (Ed.), Neural networks for speech and image processing. London: Chapman-Hall.
-
(1993)
Neural Networks for Speech and Image Processing
-
-
Perrone, M.P.1
Cooper, L.N.2
-
34
-
-
84888364466
-
Large margin DAGs for multiclass classification
-
S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Cambridge, MA: MIT Press
-
Platt, J. C., Cristianini, N., & Shawe-Taylor, J. (2000). Large margin DAGs for multiclass classification. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in neural information processing systems, 12 (pp. 547-553). Cambridge, MA: MIT Press.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 547-553
-
-
Platt, J.C.1
Cristianini, N.2
Shawe-Taylor, J.3
-
35
-
-
0031506560
-
Bayesain model averaging for linear regression models
-
Raftery, A.E., Madigan, D., & Hoeting, J.A. (1997). Bayesain model averaging for linear regression models. J. Amer. Statist. Assoc., 92, 179-191.
-
(1997)
J. Amer. Statist. Assoc.
, vol.92
, pp. 179-191
-
-
Raftery, A.E.1
Madigan, D.2
Hoeting, J.A.3
-
38
-
-
0030367578
-
Ensemble learning using decorrelated neural networks
-
Rosen, B. E. (1996). Ensemble learning using decorrelated neural networks. Connection Science, 3, 373-384.
-
(1996)
Connection Science
, vol.3
, pp. 373-384
-
-
Rosen, B.E.1
-
39
-
-
0000646059
-
Learning internal representations by error propagation
-
D. Rumelhart & J. McClelland (Eds.), Cambridge, MA: MIT Press
-
Rumelhart, D., Hinton, G., & Williams, J. (1986). Learning internal representations by error propagation. In D. Rumelhart & J. McClelland (Eds.), Parallel distributed processing (pp. 318-362). Cambridge, MA: MIT Press.
-
(1986)
Parallel Distributed Processing
, pp. 318-362
-
-
Rumelhart, D.1
Hinton, G.2
Williams, J.3
-
40
-
-
0003053548
-
Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion)
-
Smith, A. F. M., & Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion). J. Royal Statist. Soc. B, 55, 3-23.
-
(1993)
J. Royal Statist. Soc. B
, vol.55
, pp. 3-23
-
-
Smith, A.F.M.1
Roberts, G.O.2
-
41
-
-
0036163572
-
Bayesian methods for support vector machines: Evidence and predictive class probabilities
-
Sollich, P. (2002). Bayesian methods for support vector machines: Evidence and predictive class probabilities. Machine Learning, 46, 21-52.
-
(2002)
Machine Learning
, vol.46
, pp. 21-52
-
-
Sollich, P.1
-
42
-
-
0029754435
-
A review of Bayesian neural networks with an application to near infrared spectroscopy
-
Thodberg, H. H. (1996). A review of Bayesian neural networks with an application to near infrared spectroscopy. IEEE Transactions on Neural Networks, 7, 56-72.
-
(1996)
IEEE Transactions on Neural Networks
, vol.7
, pp. 56-72
-
-
Thodberg, H.H.1
-
43
-
-
0000057581
-
Predicting the future: A connectionist approach
-
Weigend, A. S., Huberman, B. A., & Rumelhart, D. E. (1990). Predicting the future: A connectionist approach. Int. J. Neural Syst., 1, 193-209.
-
(1990)
Int. J. Neural Syst.
, vol.1
, pp. 193-209
-
-
Weigend, A.S.1
Huberman, B.A.2
Rumelhart, D.E.3
-
44
-
-
0003425673
-
-
Tech. Rep. CSD-TR-98-04. Egham, Surrey: Royal Holloway, University of London
-
Weston, J., & Watkins, C. (1998). Multi-class support vector machines (Tech. Rep. CSD-TR-98-04). Egham, Surrey: Royal Holloway, University of London.
-
(1998)
Multi-class Support Vector Machines
-
-
Weston, J.1
Watkins, C.2
|