메뉴 건너뛰기




Volumn 15, Issue 8, 2003, Pages 1959-1989

An effective Bayesian neural network classifier with a comparison study to support vector machine

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0041825287     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/08997660360675107     Document Type: Article
Times cited : (22)

References (45)
  • 1
    • 0030955263 scopus 로고    scopus 로고
    • Understanding the recognition of protein structural classes by amino acid composition
    • Bahar, I., Atilgan, A. R., Jemigan, R. L., & Erman, B. (1997). Understanding the recognition of protein structural classes by amino acid composition. Proteins: Struc., Func., and Genetics, 29, 172-185.
    • (1997) Proteins: Struc., Func., and Genetics , vol.29 , pp. 172-185
    • Bahar, I.1    Atilgan, A.R.2    Jemigan, R.L.3    Erman, B.4
  • 2
    • 0026860799 scopus 로고
    • Robust linear programming discrimination of two linearly inseparable sets
    • Bennett, K. P., & Mangasarian, O. L. (1992). Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1, 23-34.
    • (1992) Optimization Methods and Software , vol.1 , pp. 23-34
    • Bennett, K.P.1    Mangasarian, O.L.2
  • 5
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling - The two cultures
    • Breiman, L. (2002). Statistical modeling - the two cultures. Statistical Science, 16, 199-215.
    • (2002) Statistical Science , vol.16 , pp. 199-215
    • Breiman, L.1
  • 7
    • 0000667930 scopus 로고    scopus 로고
    • Training v-support vector classifiers: Theory and algorithms
    • Chang, C. C., & Lin, C. J. (2001). Training v-support vector classifiers: Theory and algorithms. Neural Computation, 13, 2119-2147.
    • (2001) Neural Computation , vol.13 , pp. 2119-2147
    • Chang, C.C.1    Lin, C.J.2
  • 8
    • 0033554601 scopus 로고    scopus 로고
    • A key driving force in determination of protein structure classes
    • Chou, K. C. (1999). A key driving force in determination of protein structure classes. Biochem. Biophys. Res, Commun., 264, 216-224.
    • (1999) Biochem. Biophys. Res, Commun. , vol.264 , pp. 216-224
    • Chou, K.C.1
  • 9
    • 0034285487 scopus 로고    scopus 로고
    • Review: Prediction of protein structural classes and subcellular location
    • Chou, K. C. (2001). Review: Prediction of protein structural classes and subcellular location. Current Protein and Peptide Science, 1, 171-208.
    • (2001) Current Protein and Peptide Science , vol.1 , pp. 171-208
    • Chou, K.C.1
  • 10
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • Ding, C. H. Q., & Dubchak, I. (2001). Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 17, 349-358.
    • (2001) Bioinformatics , vol.17 , pp. 349-358
    • Ding, C.H.Q.1    Dubchak, I.2
  • 14
    • 0000954353 scopus 로고    scopus 로고
    • Efficient metropolis jumping rules
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), New York: Oxford University Press
    • Gelman, A., Roberts, R. O., & Gilks, W. R. (1996). Efficient metropolis jumping rules. In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian Statistics, 5. New York: Oxford University Press.
    • (1996) Bayesian Statistics , vol.5
    • Gelman, A.1    Roberts, R.O.2    Gilks, W.R.3
  • 16
    • 84950437936 scopus 로고
    • Annealing Markov chain Monte Carlo with applications to ancestral inference
    • Geyer, C. J., & Thompson, E. A. (1995). Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Amer. Statist. Assoc., 90, 909-920.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 909-920
    • Geyer, C.J.1    Thompson, E.A.2
  • 17
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 18
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 19
    • 0030516672 scopus 로고    scopus 로고
    • Exchange Monte Carlo method and application to spin glass simulations
    • Hukushima, K., & Nemoto, K. (1996) Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn., 65, 1604-1608.
    • (1996) J. Phys. Soc. Jpn. , vol.65 , pp. 1604-1608
    • Hukushima, K.1    Nemoto, K.2
  • 20
    • 0032787276 scopus 로고    scopus 로고
    • An empirical evaluation of Bayesian sampling with hybrid Monte Carlo for training neural network classifiers
    • Husmeier, D., Penny, W. D., & Roberts, S. J. (1999). An empirical evaluation of Bayesian sampling with hybrid Monte Carlo for training neural network classifiers. Neural Networks, 12, 677-705.
    • (1999) Neural Networks , vol.12 , pp. 677-705
    • Husmeier, D.1    Penny, W.D.2    Roberts, S.J.3
  • 21
    • 0000992191 scopus 로고
    • Approximate Bayesian factors and orthogonal parameters, with applications to testing equality of two binomial proportions
    • Kass, R. E., & Vaidyanathan, S. (1992). Approximate Bayesian factors and orthogonal parameters, with applications to testing equality of two binomial proportions. /. Royal Statist. Soc., B, 129-144.
    • (1992) J. Royal Statist. Soc., B , pp. 129-144
    • Kass, R.E.1    Vaidyanathan, S.2
  • 22
    • 0003250435 scopus 로고
    • Single-layer learning revisited: A stepwise procedure for building and training a neural network
    • J. Fogelman (Ed.), Berlin: Springer-Verlag
    • Knerr, S., Personnaz, L., & Dreyfus, G. (1990). Single-layer learning revisited: A stepwise procedure for building and training a neural network. In J. Fogelman (Ed.), Neurocomputing: Algorithms, architectures and applications. Berlin: Springer-Verlag.
    • (1990) Neurocomputing: Algorithms, Architectures and Applications
    • Knerr, S.1    Personnaz, L.2    Dreyfus, G.3
  • 23
    • 0000749354 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • J. D. Cowan, D. Touretzky, & J. Alspector (Eds.), Cambridge, MA: MIT Press
    • Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active learning. In J. D. Cowan, D. Touretzky, & J. Alspector (Eds.), Advances in neural information processing systems, 7. Cambridge, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7
    • Krogh, A.1    Vedelsby, J.2
  • 24
    • 0017309766 scopus 로고
    • Structural patterns in globular proteins
    • Levitt, M., & Chothia, C. (1976). Structural patterns in globular proteins. Nature, 261, 552-557.
    • (1976) Nature , vol.261 , pp. 552-557
    • Levitt, M.1    Chothia, C.2
  • 25
    • 0034403006 scopus 로고    scopus 로고
    • p model sampling and change point problem
    • p model sampling and change point problem. Statistica Sinica, 10, 317-342.
    • (2000) Statistica Sinica , vol.10 , pp. 317-342
    • Liang, F.1    Wong, W.H.2
  • 26
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backprop networks
    • MacKay, D. J. C. (1992). A practical Bayesian framework for backprop networks. Neural Computation, 4, 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • Mackay, D.J.C.1
  • 27
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • Mangasarian, O. L., & Wolberg, W. H. (1990). Cancer diagnosis via linear programming. SIAM News, 23, 1-18.
    • (1990) SIAM News , vol.23 , pp. 1-18
    • Mangasarian, O.L.1    Wolberg, W.H.2
  • 29
    • 0001500115 scopus 로고
    • Functions of positive and negative type, and their connection with the theory of integral equations
    • Mercer, J. (1909). Functions of positive and negative type, and their connection with the theory of integral equations. Transactions of the London Philospohical Society A, 209, 819-835.
    • (1909) Transactions of the London Philospohical Society A , vol.209 , pp. 819-835
    • Mercer, J.1
  • 31
    • 0345959413 scopus 로고
    • Tech. Rep. Durham, NC: Institute of Statistics and Decision Sciences, Duke University
    • Müller, P. (1993). Alternatives to the Gibbsa sampling scheme (Tech. Rep.). Durham, NC: Institute of Statistics and Decision Sciences, Duke University.
    • (1993) Alternatives to the Gibbsa Sampling Scheme
    • Müller, P.1
  • 33
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble methods for hybrid neural networks
    • R. J. Mammone (Ed.), London: Chapman-Hall
    • Perrone, M. P., & Cooper, L. N. (1993). When networks disagree: Ensemble methods for hybrid neural networks. In R. J. Mammone (Ed.), Neural networks for speech and image processing. London: Chapman-Hall.
    • (1993) Neural Networks for Speech and Image Processing
    • Perrone, M.P.1    Cooper, L.N.2
  • 34
    • 84888364466 scopus 로고    scopus 로고
    • Large margin DAGs for multiclass classification
    • S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Cambridge, MA: MIT Press
    • Platt, J. C., Cristianini, N., & Shawe-Taylor, J. (2000). Large margin DAGs for multiclass classification. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in neural information processing systems, 12 (pp. 547-553). Cambridge, MA: MIT Press.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 547-553
    • Platt, J.C.1    Cristianini, N.2    Shawe-Taylor, J.3
  • 38
    • 0030367578 scopus 로고    scopus 로고
    • Ensemble learning using decorrelated neural networks
    • Rosen, B. E. (1996). Ensemble learning using decorrelated neural networks. Connection Science, 3, 373-384.
    • (1996) Connection Science , vol.3 , pp. 373-384
    • Rosen, B.E.1
  • 39
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D. Rumelhart & J. McClelland (Eds.), Cambridge, MA: MIT Press
    • Rumelhart, D., Hinton, G., & Williams, J. (1986). Learning internal representations by error propagation. In D. Rumelhart & J. McClelland (Eds.), Parallel distributed processing (pp. 318-362). Cambridge, MA: MIT Press.
    • (1986) Parallel Distributed Processing , pp. 318-362
    • Rumelhart, D.1    Hinton, G.2    Williams, J.3
  • 40
    • 0003053548 scopus 로고
    • Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion)
    • Smith, A. F. M., & Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion). J. Royal Statist. Soc. B, 55, 3-23.
    • (1993) J. Royal Statist. Soc. B , vol.55 , pp. 3-23
    • Smith, A.F.M.1    Roberts, G.O.2
  • 41
    • 0036163572 scopus 로고    scopus 로고
    • Bayesian methods for support vector machines: Evidence and predictive class probabilities
    • Sollich, P. (2002). Bayesian methods for support vector machines: Evidence and predictive class probabilities. Machine Learning, 46, 21-52.
    • (2002) Machine Learning , vol.46 , pp. 21-52
    • Sollich, P.1
  • 42
    • 0029754435 scopus 로고    scopus 로고
    • A review of Bayesian neural networks with an application to near infrared spectroscopy
    • Thodberg, H. H. (1996). A review of Bayesian neural networks with an application to near infrared spectroscopy. IEEE Transactions on Neural Networks, 7, 56-72.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , pp. 56-72
    • Thodberg, H.H.1
  • 44
    • 0003425673 scopus 로고    scopus 로고
    • Tech. Rep. CSD-TR-98-04. Egham, Surrey: Royal Holloway, University of London
    • Weston, J., & Watkins, C. (1998). Multi-class support vector machines (Tech. Rep. CSD-TR-98-04). Egham, Surrey: Royal Holloway, University of London.
    • (1998) Multi-class Support Vector Machines
    • Weston, J.1    Watkins, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.