메뉴 건너뛰기




Volumn 14, Issue 8, 2007, Pages 762-769

A novel tripartite motif involved in aquaporin topogenesis, monomer folding and tetramerization

Author keywords

[No Author keywords available]

Indexed keywords

AQUAPORIN; ASPARAGINE; ASPARTIC ACID; LYSINE; MEMBRANE PROTEIN; PEPTIDES AND PROTEINS; TRIPARTITE MOTIF PROTEIN; UNCLASSIFIED DRUG;

EID: 34547650465     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb1275     Document Type: Article
Times cited : (58)

References (50)
  • 1
    • 2542452829 scopus 로고    scopus 로고
    • Cotranslational membrane protein biogenesis at the endoplasmic reticulum
    • Alder, N.N. & Johnson, A. Cotranslational membrane protein biogenesis at the endoplasmic reticulum. J. Biol. Chem. 279, 22787-22790 (2004).
    • (2004) J. Biol. Chem , vol.279 , pp. 22787-22790
    • Alder, N.N.1    Johnson, A.2
  • 2
    • 4944228608 scopus 로고    scopus 로고
    • Topogenesis of membrane proteins at the endoplasmic reticulum
    • Higy, M., Junne, T. & Spiess, M. Topogenesis of membrane proteins at the endoplasmic reticulum. Biochemistry 43, 12716-12722 (2004).
    • (2004) Biochemistry , vol.43 , pp. 12716-12722
    • Higy, M.1    Junne, T.2    Spiess, M.3
  • 3
    • 33748602095 scopus 로고    scopus 로고
    • Molecular mechanisms of aquaporin biogenesis by the endoplasmic reticulum Sec61 translocon
    • Pitonzo, D. & Skach, W. Molecular mechanisms of aquaporin biogenesis by the endoplasmic reticulum Sec61 translocon. Biochim. Biophys. Acta. 1758, 976-988 (2006).
    • (2006) Biochim. Biophys. Acta , vol.1758 , pp. 976-988
    • Pitonzo, D.1    Skach, W.2
  • 5
    • 0027519416 scopus 로고
    • Amino terminus assembly of human P-glycoprotein at the endoplasmic reticulum is directed by cooperative actions of two internal sequences
    • Skach, W.R. & Lingappa, V. Amino terminus assembly of human P-glycoprotein at the endoplasmic reticulum is directed by cooperative actions of two internal sequences. J. Biol. Chem. 268, 23552-23561 (1993).
    • (1993) J. Biol. Chem , vol.268 , pp. 23552-23561
    • Skach, W.R.1    Lingappa, V.2
  • 6
    • 0042815085 scopus 로고    scopus 로고
    • Cooperation of transmembrane segments during integration of a double-spanning protein into the ER membrane
    • Heinrich, S.U. & Rapoport, T. Cooperation of transmembrane segments during integration of a double-spanning protein into the ER membrane. EMBO J. 22, 3654-3663 (2003).
    • (2003) EMBO J , vol.22 , pp. 3654-3663
    • Heinrich, S.U.1    Rapoport, T.2
  • 7
    • 27144549973 scopus 로고    scopus 로고
    • Sequential triage of transmembrane segments by Sec61α during biogenesis of a native multispanning membrane protein
    • Sadlish, H., Pitonzo, D., Johnson, A.E. & Skach, W.R. Sequential triage of transmembrane segments by Sec61α during biogenesis of a native multispanning membrane protein. Nat. Struct. Mol. Biol. 12, 870-878 (2005).
    • (2005) Nat. Struct. Mol. Biol , vol.12 , pp. 870-878
    • Sadlish, H.1    Pitonzo, D.2    Johnson, A.E.3    Skach, W.R.4
  • 8
    • 0141992130 scopus 로고    scopus 로고
    • Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins
    • McCormick, P.J., Miao, Y., Shao, Y., Lin, J. & Johnson, A. Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins. Mol. Cell 12, 329-341 (2003).
    • (2003) Mol. Cell , vol.12 , pp. 329-341
    • McCormick, P.J.1    Miao, Y.2    Shao, Y.3    Lin, J.4    Johnson, A.5
  • 9
    • 0033790343 scopus 로고    scopus 로고
    • Helical membrane protein folding, stability and evolution
    • Popot, J.L. & Engelman, D. Helical membrane protein folding, stability and evolution. Annu. Rev. Biochem. 69, 881-922 (2000).
    • (2000) Annu. Rev. Biochem , vol.69 , pp. 881-922
    • Popot, J.L.1    Engelman, D.2
  • 10
    • 28444488355 scopus 로고    scopus 로고
    • Solving the membrane protein folding problem
    • Bowie, J.U. Solving the membrane protein folding problem. Nature 438, 581-589 (2005).
    • (2005) Nature , vol.438 , pp. 581-589
    • Bowie, J.U.1
  • 11
    • 2942623955 scopus 로고    scopus 로고
    • Polytopic membrane protein folding and assembly in vitro and in vivo
    • Booth, P.J. & High, S. Polytopic membrane protein folding and assembly in vitro and in vivo. Mol. Membr. Biol. 21, 163-170 (2004).
    • (2004) Mol. Membr. Biol , vol.21 , pp. 163-170
    • Booth, P.J.1    High, S.2
  • 12
    • 0035969998 scopus 로고    scopus 로고
    • Polar side chains drive the association of model transmembrane peptides
    • Gratkowski, H., Lear, J. & DeGrado, W. Polar side chains drive the association of model transmembrane peptides. Proc. Natl. Acad. Sci. USA 98, 880-885 (2001).
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 880-885
    • Gratkowski, H.1    Lear, J.2    DeGrado, W.3
  • 13
    • 0007949690 scopus 로고    scopus 로고
    • Interhelical hydrogen bonding drives strong interactions in membrane proteins
    • Zhou, F.X., Cocco, M., Russ, W., Brunger, A. & Engelman, D. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat. Struct. Biol. 7, 154-160 (2000).
    • (2000) Nat. Struct. Biol , vol.7 , pp. 154-160
    • Zhou, F.X.1    Cocco, M.2    Russ, W.3    Brunger, A.4    Engelman, D.5
  • 14
    • 0035924329 scopus 로고    scopus 로고
    • Structural basis of water specific transport through the AQP1 water channel
    • Sui, H., Han, B.-G., Lee, J., Walian, P. & Jap, B. Structural basis of water specific transport through the AQP1 water channel. Nature 414, 872-878 (2001).
    • (2001) Nature , vol.414 , pp. 872-878
    • Sui, H.1    Han, B.-G.2    Lee, J.3    Walian, P.4    Jap, B.5
  • 15
    • 0033761347 scopus 로고    scopus 로고
    • Structure of a glycerol-conducting channel and the basis for its selectivity
    • Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481-486 (2000).
    • (2000) Science , vol.290 , pp. 481-486
    • Fu, D.1
  • 17
    • 4644256131 scopus 로고    scopus 로고
    • The channel architecture of aquaporin 0 at a 2.2-Å resolution
    • Harries, W.E. et al. The channel architecture of aquaporin 0 at a 2.2-Å resolution. Proc. Natl. Acad. Sci. USA 101, 14045-14050 (2004).
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 14045-14050
    • Harries, W.E.1
  • 18
    • 4444221676 scopus 로고    scopus 로고
    • From structure to disease, the evolving tale of aquaporin biology
    • King, L.S., Kozono, D. & Agre, P. From structure to disease, the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell Biol. 5, 687-698 (2004).
    • (2004) Nat. Rev. Mol. Cell Biol , vol.5 , pp. 687-698
    • King, L.S.1    Kozono, D.2    Agre, P.3
  • 19
    • 0036667729 scopus 로고    scopus 로고
    • Structure and function of water channels
    • Fujiyoshi, Y. et al. Structure and function of water channels. Curr. Opin. Struct. Biol. 12, 509-515 (2002).
    • (2002) Curr. Opin. Struct. Biol , vol.12 , pp. 509-515
    • Fujiyoshi, Y.1
  • 20
    • 24344497831 scopus 로고    scopus 로고
    • More than just water channels: Unexpected cellular roles of aquaporins
    • Verkman, A.S. More than just water channels: unexpected cellular roles of aquaporins. J. Cell Sci. 118, 3225-3232 (2005).
    • (2005) J. Cell Sci , vol.118 , pp. 3225-3232
    • Verkman, A.S.1
  • 21
    • 0034609808 scopus 로고    scopus 로고
    • Structural determinants of water permeation through aquaporin-1
    • Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599-605 (2000).
    • (2000) Nature , vol.407 , pp. 599-605
    • Murata, K.1
  • 22
    • 0034633880 scopus 로고    scopus 로고
    • Secondary structure and oligomerization of the E. coli glycerol transporter
    • Manley, D.M. et al. Secondary structure and oligomerization of the E. coli glycerol transporter. Biochemistry 39, 12303-12311 (2000).
    • (2000) Biochemistry , vol.39 , pp. 12303-12311
    • Manley, D.M.1
  • 23
    • 0037040865 scopus 로고    scopus 로고
    • Erythroid expression and oligomeric state of the AQP3 protein
    • Roudier, N. et al. Erythroid expression and oligomeric state of the AQP3 protein. J. Biol. Chem. 277, 7664-7669 (2002).
    • (2002) J. Biol. Chem , vol.277 , pp. 7664-7669
    • Roudier, N.1
  • 24
    • 0027429680 scopus 로고
    • Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes. A freeze-fracture study
    • Verbavatz, J.M. et al. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes. A freeze-fracture study. J. Cell Biol. 123, 605-618 (1993).
    • (1993) J. Cell Biol , vol.123 , pp. 605-618
    • Verbavatz, J.M.1
  • 25
    • 0028914847 scopus 로고
    • Purification and structure-function analysis of native, PNGase F-treated, and endo-β-galactosidase-treated CHIP28 water channels
    • Van Hoek, A.N. et al. Purification and structure-function analysis of native, PNGase F-treated, and endo-β-galactosidase-treated CHIP28 water channels. Biochemistry 34, 2212-2219 (1995).
    • (1995) Biochemistry , vol.34 , pp. 2212-2219
    • Van Hoek, A.N.1
  • 26
    • 0029161438 scopus 로고
    • The aquaporin family of water channels in the kidney
    • Nielsen, S. & Agre, P. The aquaporin family of water channels in the kidney. Kidney Int. 48, 1057-1068 (1995).
    • (1995) Kidney Int , vol.48 , pp. 1057-1068
    • Nielsen, S.1    Agre, P.2
  • 27
  • 28
    • 0037036374 scopus 로고    scopus 로고
    • Role of C-terminal domain and transmembrane helices 5 and 6 in function and quaternary structure of major intrinsic proteins: Analysis of aquaporin/glycerol facilitator chimeric proteins
    • Duchesne, L. et al. Role of C-terminal domain and transmembrane helices 5 and 6 in function and quaternary structure of major intrinsic proteins: analysis of aquaporin/glycerol facilitator chimeric proteins. J. Biol. Chem. 277, 20598-20604 (2002).
    • (2002) J. Biol. Chem , vol.277 , pp. 20598-20604
    • Duchesne, L.1
  • 29
    • 0032545379 scopus 로고    scopus 로고
    • Oligomerization state of water channels and glycerol facilitators. Involvement of loop E
    • Lagrée, V. et al. Oligomerization state of water channels and glycerol facilitators. Involvement of loop E. J. Biol. Chem. 273, 33949-33953 (1998).
    • (1998) J. Biol. Chem , vol.273 , pp. 33949-33953
    • Lagrée, V.1
  • 30
    • 0029069427 scopus 로고
    • Distinct biogenesis mechanisms for water channels MIWC and CHIP28 at the endoplasmic reticulum
    • Shi, L.-B., Skach, W., Ma, T. & Verkman, A. Distinct biogenesis mechanisms for water channels MIWC and CHIP28 at the endoplasmic reticulum. Biochemistry 34, 8250-8256 (1995).
    • (1995) Biochemistry , vol.34 , pp. 8250-8256
    • Shi, L.-B.1    Skach, W.2    Ma, T.3    Verkman, A.4
  • 31
    • 0034602391 scopus 로고    scopus 로고
    • Identification of sequence determinants that direct different intracellular folding pathways for AQP1 and AQP4
    • Foster, W. et al. Identification of sequence determinants that direct different intracellular folding pathways for AQP1 and AQP4. J. Biol. Chem. 275, 34157-34165 (2000).
    • (2000) J. Biol. Chem , vol.275 , pp. 34157-34165
    • Foster, W.1
  • 32
    • 0028318283 scopus 로고
    • Biogenesis and transmembrane topology of the CHIP28 water channel in the endoplasmic reticulum
    • Skach, W.R. et al. Biogenesis and transmembrane topology of the CHIP28 water channel in the endoplasmic reticulum. J. Cell Biol. 125, 803-815 (1994).
    • (1994) J. Cell Biol , vol.125 , pp. 803-815
    • Skach, W.R.1
  • 33
    • 0034492193 scopus 로고    scopus 로고
    • Reorientation of Aquaporin-1 topology during maturation in the endoplasmic reticulum
    • Lu, Y. et al. Reorientation of Aquaporin-1 topology during maturation in the endoplasmic reticulum. Mol. Biol. Cell 11, 2973-2985 (2000).
    • (2000) Mol. Biol. Cell , vol.11 , pp. 2973-2985
    • Lu, Y.1
  • 34
    • 12844283314 scopus 로고    scopus 로고
    • Differential stability of biogenesis intermediates reveals a common pathway for aquaporin-1 topological maturation
    • Buck, T.M. & Skach, W. Differential stability of biogenesis intermediates reveals a common pathway for aquaporin-1 topological maturation. J. Biol. Chem. 280, 261-269 (2005).
    • (2005) J. Biol. Chem , vol.280 , pp. 261-269
    • Buck, T.M.1    Skach, W.2
  • 35
    • 0000651660 scopus 로고
    • The distribution of positively charged residues in bacterial inner membrane proteins correlates with trans-membrane topology
    • Heijne, G.V. The distribution of positively charged residues in bacterial inner membrane proteins correlates with trans-membrane topology. EMBO J. 5, 3021-3027 (1986).
    • (1986) EMBO J , vol.5 , pp. 3021-3027
    • Heijne, G.V.1
  • 36
    • 0027976658 scopus 로고
    • Membrane topology of aquaporin CHIP - analysis of functional epitope-scanning mutants by vectorial proteolysis
    • Preston, G.M., Jung, J., Guggino, W. & Agre, P. Membrane topology of aquaporin CHIP - analysis of functional epitope-scanning mutants by vectorial proteolysis. J. Biol. Chem. 269, 1668-1673 (1994).
    • (1994) J. Biol. Chem , vol.269 , pp. 1668-1673
    • Preston, G.M.1    Jung, J.2    Guggino, W.3    Agre, P.4
  • 37
    • 1542376209 scopus 로고    scopus 로고
    • Missense mutations in transmembrane domains of proteins: Phenotypic propensity of polar residues for human disease
    • Partridge, A.W., Therien, A.G. & Deber, C.M. Missense mutations in transmembrane domains of proteins: phenotypic propensity of polar residues for human disease. Proteins 54, 648-656 (2004).
    • (2004) Proteins , vol.54 , pp. 648-656
    • Partridge, A.W.1    Therien, A.G.2    Deber, C.M.3
  • 39
    • 0033281074 scopus 로고    scopus 로고
    • The translocon: A dynamic gateway at the ER membrane
    • Johnson, A.E. & van Waes, M. The translocon: a dynamic gateway at the ER membrane. Annu. Rev. Cell Dev. Biol. 15, 799-842 (1999).
    • (1999) Annu. Rev. Cell Dev. Biol , vol.15 , pp. 799-842
    • Johnson, A.E.1    van Waes, M.2
  • 40
    • 17744395499 scopus 로고    scopus 로고
    • Biogenesis of CFTR and other polytopic membrane proteins; new roles for the ribosome-translocon complex
    • Sadlish, H. & Skach, W. Biogenesis of CFTR and other polytopic membrane proteins; new roles for the ribosome-translocon complex. J. Membr. Biol. 202, 115-126 (2004).
    • (2004) J. Membr. Biol , vol.202 , pp. 115-126
    • Sadlish, H.1    Skach, W.2
  • 41
    • 0032987478 scopus 로고    scopus 로고
    • Membrane protein folding and stability: Physical principles
    • White, S.H. & Wimley, W. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 28, 319-365 (1999).
    • (1999) Annu. Rev. Biophys. Biomol. Struct , vol.28 , pp. 319-365
    • White, S.H.1    Wimley, W.2
  • 42
    • 0033983453 scopus 로고    scopus 로고
    • Asparagine-mediated self-association of a model transmembrane helix
    • Choma, C., Gratowski, H., Lear, J. & DeGrado, W. Asparagine-mediated self-association of a model transmembrane helix. Nat. Struct. Biol. 7, 161-166 (2000).
    • (2000) Nat. Struct. Biol , vol.7 , pp. 161-166
    • Choma, C.1    Gratowski, H.2    Lear, J.3    DeGrado, W.4
  • 43
    • 33750498869 scopus 로고    scopus 로고
    • Asn- and Asp-mediated interactions between transmembrane helices during translocon-mediated membrane protein assembly
    • 1111-1116
    • Meindl-Beinker, N.M., Lundin, C., Nilsson, I., White, S. & von Heijne, G. Asn- and Asp-mediated interactions between transmembrane helices during translocon-mediated membrane protein assembly. EMBO Rep. 7, 1111-1116 (2006).
    • (2006) EMBO Rep , vol.7
    • Meindl-Beinker, N.M.1    Lundin, C.2    Nilsson, I.3    White, S.4    von Heijne, G.5
  • 44
    • 33644689424 scopus 로고    scopus 로고
    • An energy-dependent maturation step is required for release of the cystic fibrosis transmembrane conductance regulator from early endoplasmic reticulum biosynthetic machinery
    • Oberdorf, J., Pitonzo, D. & Skach, W. An energy-dependent maturation step is required for release of the cystic fibrosis transmembrane conductance regulator from early endoplasmic reticulum biosynthetic machinery. J. Biol. Chem. 280, 38193-38202 (2005).
    • (2005) J. Biol. Chem , vol.280 , pp. 38193-38202
    • Oberdorf, J.1    Pitonzo, D.2    Skach, W.3
  • 45
    • 12344291875 scopus 로고    scopus 로고
    • Coupled tertiary folding and oligomerization of the T1 domain of Kv channels
    • Robinson, J.M. & Deutsch, C. Coupled tertiary folding and oligomerization of the T1 domain of Kv channels. Neuron 45, 223-232 (2005).
    • (2005) Neuron , vol.45 , pp. 223-232
    • Robinson, J.M.1    Deutsch, C.2
  • 46
    • 0033579812 scopus 로고    scopus 로고
    • Hourglass pore-forming domains restrict aquaporin-1 tetramer assembly
    • Mathai, J.C. & Agre, P. Hourglass pore-forming domains restrict aquaporin-1 tetramer assembly. Biochemistry 38, 923-928 (1999).
    • (1999) Biochemistry , vol.38 , pp. 923-928
    • Mathai, J.C.1    Agre, P.2
  • 47
    • 0035852730 scopus 로고    scopus 로고
    • Visualization of a water-selective pore by electron crystallography in vitreous ice
    • Ren, G., Reddy, V., Shcne, A., Melnyk, P. & Mitra, A. Visualization of a water-selective pore by electron crystallography in vitreous ice. Proc. Natl. Acad. Sci. USA 98, 1398-1403 (2001).
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 1398-1403
    • Ren, G.1    Reddy, V.2    Shcne, A.3    Melnyk, P.4    Mitra, A.5
  • 48
    • 2442659197 scopus 로고    scopus 로고
    • Aquaporin-0 membrane junctions reveal the structure of a closed water pore
    • Gonen, T. et al. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429, 193-197 (2004).
    • (2004) Nature , vol.429 , pp. 193-197
    • Gonen, T.1
  • 49
    • 29144521255 scopus 로고    scopus 로고
    • Implications of the aquaporin-4 structure on array formation and cell adhesion
    • Hiroaki, Y. et al. Implications of the aquaporin-4 structure on array formation and cell adhesion. J. Mol. Biol. 355, 628-639 (2006).
    • (2006) J. Mol. Biol , vol.355 , pp. 628-639
    • Hiroaki, Y.1
  • 50
    • 0035979744 scopus 로고    scopus 로고
    • A refined structure of human aquaporin-1
    • de Groot, B.L., Engel, A. & Grubmueller, H. A refined structure of human aquaporin-1. FEBS Lett. 504, 206-211 (2001).
    • (2001) FEBS Lett , vol.504 , pp. 206-211
    • de Groot, B.L.1    Engel, A.2    Grubmueller, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.