메뉴 건너뛰기




Volumn 18, Issue 2, 2007, Pages 163-186

Neuro-IG: A hybrid system for selection and elimination of predictor variables and non relevant individuals

Author keywords

Automatic training; Hybrid system; Neural network; Pruning; Rule extraction; Symbolic system

Indexed keywords


EID: 34547619201     PISSN: 08684952     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (2)

References (67)
  • 1
  • 2
    • 85041757497 scopus 로고    scopus 로고
    • Neural network for the selection and the elimination of the exogenous variables and the non applicable individuals
    • December 21-22. Electronics Research Institute ERI, Cairo, Egypt
    • Atmani, B., and B. Beldjilali (2003). Neural network for the selection and the elimination of the exogenous variables and the non applicable individuals. In The Second International Workshop on Advanced Computation For Engineering Applications (ACEA03), December 21-22. Electronics Research Institute (ERI), Cairo, Egypt.
    • (2003) The Second International Workshop on Advanced Computation For Engineering Applications (ACEA03)
    • Atmani, B.1    Beldjilali, B.2
  • 3
    • 0035127989 scopus 로고    scopus 로고
    • Symbolic knowledge extraction from trained neural networks: A sound approach
    • D'Avila Garcez, A.S., K. Broda and D.M. Gabbay (2001). Symbolic knowledge extraction from trained neural networks: a sound approach. Artificial Intelligence, 125(1), 155-207.
    • (2001) Artificial Intelligence , vol.125 , Issue.1 , pp. 155-207
    • D'Avila Garcez, A.S.1    Broda, K.2    Gabbay, D.M.3
  • 4
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti, R. (1994). Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks, 5(4), 537-550.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 5
    • 34547622536 scopus 로고    scopus 로고
    • Decision tree modeling with relational views
    • M.-S. Hacid et al, Eds, ISMIS
    • Bentayeb, F., and J. Darmont (2002). Decision tree modeling with relational views. In M.-S. Hacid et al. (Eds), ISMIS 2002. LNAI, vol. 2366. pp. 423-431.
    • (2002) LNAI , vol.2366 , pp. 423-431
    • Bentayeb, F.1    Darmont, J.2
  • 6
    • 34547615629 scopus 로고    scopus 로고
    • Extraction of rules of a PMC network to values of entry continues using units to doorstep
    • Bologna. G., and C. Pellegrini (1996). Extraction of rules of a PMC network to values of entry continues using units to doorstep. Acts of Days NSI.
    • (1996) Acts of Days NSI
    • Bologna, G.1    Pellegrini, C.2
  • 7
    • 0031249032 scopus 로고    scopus 로고
    • FILM: A fuzzy inductive learning method for automated knowledge acquisition
    • Bingchiang, J., Y.M. Jeng and T.P. Liang (1997). FILM: a fuzzy inductive learning method for automated knowledge acquisition. Decision Support Systems, 21(2), 61-73.
    • (1997) Decision Support Systems , vol.21 , Issue.2 , pp. 61-73
    • Bingchiang, J.1    Jeng, Y.M.2    Liang, T.P.3
  • 8
    • 0003802343 scopus 로고
    • Classification and regression trees
    • Technical Report, Wadsworth International, Monterey, CA
    • Breiman, L., J.H. Friedman, R.A. Olshen and C.J. Stone (1984). Classification and regression trees. Technical Report, Wadsworth International, Monterey, CA.
    • (1984)
    • Breiman, L.1    Friedman, J.H.2    Olshen, R.A.3    Stone, C.J.4
  • 10
    • 2442602088 scopus 로고    scopus 로고
    • A neuro-fuzzy network to generate human-understandable knowledge from data
    • Castellano, G., A.M. Fanelli and C. Mencar (2002). A neuro-fuzzy network to generate human-understandable knowledge from data. Cognitive Systems Research, 3(2), 125-144.
    • (2002) Cognitive Systems Research , vol.3 , Issue.2 , pp. 125-144
    • Castellano, G.1    Fanelli, A.M.2    Mencar, C.3
  • 11
    • 0034061686 scopus 로고    scopus 로고
    • Variable selection using neural network models
    • Castellano, G., and A.M. Fanelli (2000). Variable selection using neural network models. Neurocomputing, 31, 1-13.
    • (2000) Neurocomputing , vol.31 , pp. 1-13
    • Castellano, G.1    Fanelli, A.M.2
  • 12
    • 0001859670 scopus 로고    scopus 로고
    • Data mining and database systems
    • Chaudhuri, S. (1998). Data mining and database systems. Data Engineering Bulletin, 21(1), 4-8.
    • (1998) Data Engineering Bulletin , vol.21 , Issue.1 , pp. 4-8
    • Chaudhuri, S.1
  • 15
    • 34249822387 scopus 로고    scopus 로고
    • Apprentissage partir d'exemples
    • Technical Report. University of Lille, Grappa
    • Denis, F., and R. Gilleron (1999). Apprentissage partir d'exemples. Technical Report. University of Lille 3, Grappa.
    • (1999) , pp. 3
    • Denis, F.1    Gilleron, R.2
  • 18
    • 85041780678 scopus 로고    scopus 로고
    • Extraction of knowledge from data, generalized segmentation
    • ERIC laboratory, University of Lyons
    • Erray, W. (2001). Extraction of knowledge from data, generalized segmentation. In Memory DEA ECD. ERIC laboratory, University of Lyons 2.
    • (2001) Memory DEA ECD , pp. 2
    • Erray, W.1
  • 19
    • 0036864783 scopus 로고    scopus 로고
    • Diagnostic rule extraction from trained feedforward neural networks
    • Fan, Y., and C.J.A.M.E.S. Li (2002). Diagnostic rule extraction from trained feedforward neural networks. Mechanical Systems and Signal Processing, 16(6), 59-67.
    • (2002) Mechanical Systems and Signal Processing , vol.16 , Issue.6 , pp. 59-67
    • Fan, Y.1    Li, C.J.2
  • 20
  • 21
    • 0033907729 scopus 로고    scopus 로고
    • Machine learning for information extraction in informal domains
    • Freitag, D. (2000). Machine learning for information extraction in informal domains. Machine Learning, 39(23), 169-202.
    • (2000) Machine Learning , vol.39 , Issue.23 , pp. 169-202
    • Freitag, D.1
  • 22
    • 33746347020 scopus 로고    scopus 로고
    • Applying GMDH algorithm to extract rules from examples
    • Fujimoto, K., and S. Nakabayashi (2003). Applying GMDH algorithm to extract rules from examples. Systems Analysis Modelling Simulation, 43(10), 1311-1319.
    • (2003) Systems Analysis Modelling Simulation , vol.43 , Issue.10 , pp. 1311-1319
    • Fujimoto, K.1    Nakabayashi, S.2
  • 26
    • 0003270330 scopus 로고    scopus 로고
    • Identification of bat echolocation calls using a decision tree classification system
    • Herr, A., N.I. Klomp and J.S. Atkinson (1997). Identification of bat echolocation calls using a decision tree classification system. Complexity International, 4.
    • (1997) Complexity International , vol.4
    • Herr, A.1    Klomp, N.I.2    Atkinson, J.S.3
  • 27
    • 0035426682 scopus 로고    scopus 로고
    • Three-objective genetics-based machine learning for linguistic rule extraction
    • Ishibuchi, H., T. Nakashima and T. Murata (2001). Three-objective genetics-based machine learning for linguistic rule extraction. Information Sciences, 136(1), 109-133.
    • (2001) Information Sciences , vol.136 , Issue.1 , pp. 109-133
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 28
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • Jain, A., and D. Zongker (1997). Feature selection: evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mech. Intell., 19(2), 153-158.
    • (1997) IEEE Trans. Pattern Anal. Mech. Intell , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 30
    • 34547617961 scopus 로고    scopus 로고
    • The extraction of knowledge from data, a new topic for the scientific research
    • Kodratoff, Y. (1997). The extraction of knowledge from data, a new topic for the scientific research. Magazine Electronic READ.
    • (1997) Magazine Electronic READ
    • Kodratoff, Y.1
  • 32
    • 0033878767 scopus 로고    scopus 로고
    • Neural networks and structured knowledge: Rule extraction and applications
    • Kurfess, F.J. (2000). Neural networks and structured knowledge: rule extraction and applications. Applied Intelligence, 12(1-2), 7-13.
    • (2000) Applied Intelligence , vol.12 , Issue.1-2 , pp. 7-13
    • Kurfess, F.J.1
  • 33
    • 84860413800 scopus 로고    scopus 로고
    • Important variable selection techniques with, multiple solutions for medical information applications
    • Lee, I.N., S.C. Lee and M.J. Embrechts (2002). Important variable selection techniques with, multiple solutions for medical information applications. Medical Informatics and the Internet in Medicine, 27(4), 253-266.
    • (2002) Medical Informatics and the Internet in Medicine , vol.27 , Issue.4 , pp. 253-266
    • Lee, I.N.1    Lee, S.C.2    Embrechts, M.J.3
  • 36
    • 84860417163 scopus 로고    scopus 로고
    • Appropriate medical data categorization for data mining classification techniques
    • Liao, S.C., and I.N. Lee (2002). Appropriate medical data categorization for data mining classification techniques. Medical Informatics and the Internet in Medicine, 27(1), 59-67.
    • (2002) Medical Informatics and the Internet in Medicine , vol.27 , Issue.1 , pp. 59-67
    • Liao, S.C.1    Lee, I.N.2
  • 37
    • 0032595632 scopus 로고    scopus 로고
    • An integrated database and expert system for failure mechanism identification: Part I - Automated knowledge acquisition
    • Liao, T.W., Z.H. Zhan and C.R. Mount (1999). An integrated database and expert system for failure mechanism identification: Part I - Automated knowledge acquisition. Engineering Failure Analysis, 6(6), 387-406.
    • (1999) Engineering Failure Analysis , vol.6 , Issue.6 , pp. 387-406
    • Liao, T.W.1    Zhan, Z.H.2    Mount, C.R.3
  • 38
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity and training of thirty-three old and new classification algorithms
    • Lim, T., W. Loh and Y. Shih (2000). A comparison of prediction accuracy, complexity and training of thirty-three old and new classification algorithms. Machine Learning Journal, 40, 203-228.
    • (2000) Machine Learning Journal , vol.40 , pp. 203-228
    • Lim, T.1    Loh, W.2    Shih, Y.3
  • 39
  • 40
    • 0003040892 scopus 로고
    • NeuroRule: A connectionist approach to data mining
    • Zürich, Switzerland. pp
    • Lu, H., R. Setiono and H. Liu (1995). NeuroRule: A connectionist approach to data mining. in Proceeding of the 21st VLDB conference, Zürich, Switzerland. pp. 478-489.
    • (1995) Proceeding of the 21st VLDB conference , pp. 478-489
    • Lu, H.1    Setiono, R.2    Liu, H.3
  • 42
    • 0029270805 scopus 로고
    • Artificial neural networks for feature extraction and multivariate data projection
    • Mao, J., and A.K. Jain (1995). Artificial neural networks for feature extraction and multivariate data projection. IEEE Trans. Neural Networks, 6, 296-317.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 296-317
    • Mao, J.1    Jain, A.K.2
  • 43
    • 0031384994 scopus 로고    scopus 로고
    • Comparison of som AI and statistical classification methods for marketing case
    • Montgomery, D., G. Swinnen and K. Vanhoof (1997). Comparison of som AI and statistical classification methods for marketing case. European Journal of Operational Research, 103(1), 312-325.
    • (1997) European Journal of Operational Research , vol.103 , Issue.1 , pp. 312-325
    • Montgomery, D.1    Swinnen, G.2    Vanhoof, K.3
  • 44
    • 0017535866 scopus 로고    scopus 로고
    • A branch and bound algorithm for feature subset selection
    • Narendra, P.M., and K. Fukunaga (1997). A branch and bound algorithm for feature subset selection. IEEE Trans. Comput., 26(9), 917-922.
    • (1997) IEEE Trans. Comput , vol.26 , Issue.9 , pp. 917-922
    • Narendra, P.M.1    Fukunaga, K.2
  • 46
    • 0037308138 scopus 로고    scopus 로고
    • A hierarchical recurrent neuro-fuzzy model for system identification
    • Nurnberger, A. (2003). A hierarchical recurrent neuro-fuzzy model for system identification. International Journal of Approximate Reasoning, 32(2), 59-67.
    • (2003) International Journal of Approximate Reasoning , vol.32 , Issue.2 , pp. 59-67
    • Nurnberger, A.1
  • 47
    • 0042591522 scopus 로고    scopus 로고
    • A complete fussy decision tree technique
    • Olaru, C., and L. Wehenkel (2003). A complete fussy decision tree technique. Fussy Set and Systems, 138(2).
    • (2003) Fussy Set and Systems , vol.138 , Issue.2
    • Olaru, C.1    Wehenkel, L.2
  • 48
    • 0344604508 scopus 로고    scopus 로고
    • INSS: A hybrid system for constructive machine learning
    • Osorio, F.S., and B. Amy (1999). INSS: A hybrid system for constructive machine learning. Neurocomputing, 28(1), 59-67.
    • (1999) Neurocomputing , vol.28 , Issue.1 , pp. 59-67
    • Osorio, F.S.1    Amy, B.2
  • 49
    • 85041789880 scopus 로고
    • Minimization of the number of connections of a network multilayered neuronal at the time of the training
    • Report LAAS n91451
    • Poulard, H., D. Martinez and D. Esteve (1991). Minimization of the number of connections of a network multilayered neuronal at the time of the training. Report LAAS n91451.
    • (1991)
    • Poulard, H.1    Martinez, D.2    Esteve, D.3
  • 54
    • 33751563141 scopus 로고    scopus 로고
    • TANAGRA: Une plate-forme d'expé rimentation pour la fouille de données
    • Rakotomalala, R. (2005b). TANAGRA: une plate-forme d'expé rimentation pour la fouille de données. Revue MODULAD, 32, 70-85.
    • (2005) Revue MODULAD , vol.32 , pp. 70-85
    • Rakotomalala, R.1
  • 59
    • 0036184742 scopus 로고    scopus 로고
    • A data mining approach to spacer oligonucleotide typing of Mycrobacterium tuberculosis
    • Sebban, M., I. Mokrousov, N. Rastogi and C. Sola (2002). A data mining approach to spacer oligonucleotide typing of Mycrobacterium tuberculosis. Bioinformatics(electronic edition), 18(2), 235-243.
    • (2002) Bioinformatics(electronic edition) , vol.18 , Issue.2 , pp. 235-243
    • Sebban, M.1    Mokrousov, I.2    Rastogi, N.3    Sola, C.4
  • 61
    • 0030087643 scopus 로고    scopus 로고
    • Extraction rules from pruned neural networks for breast cancer diagnosis
    • Setiono, R. (1996). Extraction rules from pruned neural networks for breast cancer diagnosis. Artificial Intelligence in Medicine, 8(1), 37-51.
    • (1996) Artificial Intelligence in Medicine , vol.8 , Issue.1 , pp. 37-51
    • Setiono, R.1
  • 62
    • 0033885056 scopus 로고    scopus 로고
    • FERNN: An algorithm for fast extraction of rules from neural networks
    • Setiono, R., and W.K. Leow (2000). FERNN: An algorithm for fast extraction of rules from neural networks. Applied Intelligence, 12(1-2), 15-25.
    • (2000) Applied Intelligence , vol.12 , Issue.1-2 , pp. 15-25
    • Setiono, R.1    Leow, W.K.2
  • 63
    • 0030248249 scopus 로고    scopus 로고
    • Improved feature screening in feedforward neural networks
    • Stepps, J.M., and K.W. Bauer (1996). Improved feature screening in feedforward neural networks. Neurocomputing, 13, 47-58.
    • (1996) Neurocomputing , vol.13 , pp. 47-58
    • Stepps, J.M.1    Bauer, K.W.2
  • 64
    • 85041766574 scopus 로고    scopus 로고
    • Zighed, D.A, 1996, SIPINA for Windows, ver 2.5. Laboratory ERIC, University of lyon2
    • Zighed, D.A. (1996). SIPINA for Windows, ver 2.5. Laboratory ERIC, University of lyon2.
  • 67
    • 85041769386 scopus 로고    scopus 로고
    • Zighed, D.A., S. Lallich and F. Muhlenbach (2002). Separability index in supervised learning. In Principles of Data Mining and Knowledge Discovery, 6th European Conference.
    • Zighed, D.A., S. Lallich and F. Muhlenbach (2002). Separability index in supervised learning. In Principles of Data Mining and Knowledge Discovery, 6th European Conference.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.