메뉴 건너뛰기




Volumn 32, Issue 2-3, 2003, Pages 153-170

A hierarchical recurrent neuro-fuzzy model for system identification

Author keywords

Dynamic system; Hierarchical fuzzy system; Hybrid system; Neuro fuzzy; Recurrent architecture

Indexed keywords

COMPUTATIONAL COMPLEXITY; DATA REDUCTION; DATA STORAGE EQUIPMENT; KNOWLEDGE BASED SYSTEMS; NEURAL NETWORKS; TIME SERIES ANALYSIS;

EID: 0037308138     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0888-613X(02)00081-6     Document Type: Article
Times cited : (8)

References (25)
  • 2
    • 0026923465 scopus 로고
    • Learning and tuning fuzzy logic controllers through reinforcements
    • Berenji H.R., Khedkar P. Learning and tuning fuzzy logic controllers through reinforcements. IEEE Trans. Neural Networks. 3:1992;724-740.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 724-740
    • Berenji, H.R.1    Khedkar, P.2
  • 4
    • 0001388768 scopus 로고    scopus 로고
    • Neuro-fuzzy control based on the NEFCON-model: Recent developments
    • Nürnberger A., Nauck D., Kruse R. Neuro-fuzzy control based on the NEFCON-model: recent developments. Soft Computing. 2(4):1999;182-186.
    • (1999) Soft Computing , vol.2 , Issue.4 , pp. 182-186
    • Nürnberger, A.1    Nauck, D.2    Kruse, R.3
  • 5
    • 0000080094 scopus 로고    scopus 로고
    • The neural network model rulenet and its application to mobile robot navigation
    • Tschichold-Gürman N. The neural network model rulenet and its application to mobile robot navigation. Fuzzy Sets Syst. 85:1997;287-303.
    • (1997) Fuzzy Sets Syst. , vol.85 , pp. 287-303
    • Tschichold-Gürman, N.1
  • 7
    • 0027601884 scopus 로고
    • Anfis: Adaptive-network-based fuzzy inference systems
    • Jang J.-S.R. Anfis: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23:1993;665-685.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , pp. 665-685
    • Jang, J.-S.R.1
  • 13
    • 0002267989 scopus 로고
    • Recurrent backpropagation networks
    • Y. Chauvin, & D.E. Rumelhart. Hillsdale, NJ: Erlbaum
    • Pineda F.J. Recurrent backpropagation networks. Chauvin Y., Rumelhart D.E. Backpropagation: Theory, Architectures and Applications. 1995;99-135 Erlbaum, Hillsdale, NJ.
    • (1995) Backpropagation: Theory, Architectures and Applications , pp. 99-135
    • Pineda, F.J.1
  • 15
    • 84867176579 scopus 로고
    • A fuzzy perceptron as a generic model for neuro-fuzzy approaches
    • Munich
    • Nauck D. A fuzzy perceptron as a generic model for neuro-fuzzy approaches. Proceedings of the Fuzzy-Systeme'94, Munich. 1994.
    • (1994) Proceedings of the Fuzzy-Systeme'94
    • Nauck, D.1
  • 16
    • 0026943536 scopus 로고
    • Generating fuzzy rules by learning from examples
    • Wang L., Mendel J.M. Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 22(6):1992;1414-1427.
    • (1992) IEEE Trans. Syst. Man Cybern. , vol.22 , Issue.6 , pp. 1414-1427
    • Wang, L.1    Mendel, J.M.2
  • 17
    • 0003066062 scopus 로고
    • Experimental analysis of the real time recurrent learning algorithm
    • Williams R.J., Zipser D. Experimental analysis of the real time recurrent learning algorithm. Connection Science. 1:1989;87-111.
    • (1989) Connection Science , vol.1 , pp. 87-111
    • Williams, R.J.1    Zipser, D.2
  • 19
    • 0001234705 scopus 로고
    • Second-order derivatives for network pruning: Optimal brain surgeon
    • S. Hanson, S. Cowan, Giles C.L. San Mateo, CA: Morgan Kaufmann
    • Hassibi B., Storck D.G. Second-order derivatives for network pruning: optimal brain surgeon. Hanson S., Cowan S., Giles C.L. Advances in Neural Information Processing (NIPS-5). vol. 5:1993;164-171 Morgan Kaufmann, San Mateo, CA.
    • (1993) Advances in Neural Information Processing (NIPS-5) , vol.5 , pp. 164-171
    • Hassibi, B.1    Storck, D.G.2
  • 20
    • 0012914071 scopus 로고    scopus 로고
    • Improved NEFCLASS pruning techniques applied to a real world domain
    • G. Krell, B. Michaelis, D. Nauck, & R. Kruse. Magdeburg: Logisch GmbH
    • Klose A., Nürnberger A., Nauck D. Improved NEFCLASS pruning techniques applied to a real world domain. Krell G., Michaelis B., Nauck D., Kruse R. Proceedings of the Neural Networks in Applications (NN'99). 1999;47-52 Logisch GmbH, Magdeburg.
    • (1999) Proceedings of the Neural Networks in Applications (NN'99) , pp. 47-52
    • Klose, A.1    Nürnberger, A.2    Nauck, D.3
  • 24
    • 0029342226 scopus 로고
    • On the computational power of Elman-style recurrent networks
    • S.C. Kremer, On the computational power of Elman-style recurrent networks, IEEE Transactions on Neural Networks 6 (4) (1995) 1000-1004.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.4 , pp. 1000-1004
    • Kremer, S.C.1
  • 25
    • 0034252168 scopus 로고    scopus 로고
    • Neural fuzzy preference integration using neural preference Moore machines
    • S. Wermter, Neural fuzzy preference integration using neural preference Moore machines, International Journal of Neural Systems 10 (4) (2000) 287-310.
    • (2000) International Journal of Neural Systems , vol.10 , Issue.4 , pp. 287-310
    • Wermter, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.