메뉴 건너뛰기




Volumn 170, Issue 2, 2005, Pages 1394-1417

A multisymplectic integrator for the periodic nonlinear Schrödinger equation

Author keywords

Multisymplectic integrator; Nonlinear Schr dinger equation

Indexed keywords

DIFFERENTIAL EQUATIONS; DISCRETE TIME CONTROL SYSTEMS; FINITE ELEMENT METHOD;

EID: 27144436424     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2005.01.031     Document Type: Article
Times cited : (20)

References (24)
  • 1
    • 0016992794 scopus 로고
    • A nonlinear difference scheme and inverse scattering
    • M.J. Ablowitz, and J.F. Ladik A nonlinear difference scheme and inverse scattering Stud. Appl. Math 55 1976 213 229
    • (1976) Stud. Appl. Math , vol.55 , pp. 213-229
    • Ablowitz, M.J.1    Ladik, J.F.2
  • 3
    • 0042137401 scopus 로고    scopus 로고
    • Multi-symplectic structures and wave propagation
    • T.J. Bridges Multi-symplectic structures and wave propagation Math. Proc. Cam. Phil. Soc. 121 1997 147 190
    • (1997) Math. Proc. Cam. Phil. Soc. , vol.121 , pp. 147-190
    • Bridges, T.J.1
  • 4
    • 0037832748 scopus 로고    scopus 로고
    • Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity
    • T.J. Bridges, and S. Reich Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity Phys. Lett. A 284 2001 184 193
    • (2001) Phys. Lett. A , vol.284 , pp. 184-193
    • Bridges, T.J.1    Reich, S.2
  • 5
    • 0042315367 scopus 로고    scopus 로고
    • Total variation in discrete multisymplectic field theory and multisymplectic energy momentum integrators
    • J.B. Chen Total variation in discrete multisymplectic field theory and multisymplectic energy momentum integrators Lett. Math. Phys. 61 2002 63 73
    • (2002) Lett. Math. Phys. , vol.61 , pp. 63-73
    • Chen, J.B.1
  • 6
    • 0037396154 scopus 로고    scopus 로고
    • Total variation in Hamiltonian formalism and symplectic-energy integrators
    • J.B. Chen, H.Y. Guo, and K. Wu Total variation in Hamiltonian formalism and symplectic-energy integrators J. Math. Phys. 44 2003 1688 1702
    • (2003) J. Math. Phys. , vol.44 , pp. 1688-1702
    • Chen, J.B.1    Guo, H.Y.2    Wu, K.3
  • 7
    • 0036532037 scopus 로고    scopus 로고
    • Symplectic and multisymplectic methods for the nonlinear Schrödinger equation
    • J.B. Chen, M.Z. Qin, and Y.F. Tang Symplectic and multisymplectic methods for the nonlinear Schrödinger equation Comput. Math. Appl. 43 2002 1095 1106
    • (2002) Comput. Math. Appl. , vol.43 , pp. 1095-1106
    • Chen, J.B.1    Qin, M.Z.2    Tang, Y.F.3
  • 8
    • 0036644593 scopus 로고    scopus 로고
    • A multisymplectic variational integrator for the nonlinear Schrödinger equation
    • J.B. Chen A multisymplectic variational integrator for the nonlinear Schrödinger equation Numer. Meth. Part. Diff. Eq. 18 2002 523 536
    • (2002) Numer. Meth. Part. Diff. Eq. , vol.18 , pp. 523-536
    • Chen, J.B.1
  • 12
    • 49149137309 scopus 로고
    • Finite-difference solutions of a nonlinear Schrödinger equation
    • M. Delfour, M. Fortin, and G. Payre Finite-difference solutions of a nonlinear Schrödinger equation J. Comput. Phys. 44 1981 277 288
    • (1981) J. Comput. Phys. , vol.44 , pp. 277-288
    • Delfour, M.1    Fortin, M.2    Payre, G.3
  • 13
    • 0000094449 scopus 로고
    • The Poincaré-Cartan invariant in the calculus of variations
    • P.L. Garcia The Poincaré-Cartan invariant in the calculus of variations Symp. Math. 14 1974 219 246
    • (1974) Symp. Math. , vol.14 , pp. 219-246
    • Garcia, P.L.1
  • 15
    • 0028766065 scopus 로고
    • Symplectic methods for the nonlinear Schrödinger equation
    • B.M. Herbst, F. Varadi, and M.J. Ablowitz Symplectic methods for the nonlinear Schrödinger equation Math. Comput. Simul. 37 1994 353 369
    • (1994) Math. Comput. Simul. , vol.37 , pp. 353-369
    • Herbst, B.M.1    Varadi, F.2    Ablowitz, M.J.3
  • 18
    • 0032476963 scopus 로고    scopus 로고
    • Multisymplectic geometry, variational integrators, and nonlinear PDEs
    • J.E. Marsden, G.W. Patrick, and S. Shkoller Multisymplectic geometry, variational integrators, and nonlinear PDEs Comm. Math. Phys. 199 1998 351 395
    • (1998) Comm. Math. Phys. , vol.199 , pp. 351-395
    • Marsden, J.E.1    Patrick, G.W.2    Shkoller, S.3
  • 19
    • 34249766017 scopus 로고
    • Symplectic integration of Hamiltonian wave equations
    • R. McLachlan Symplectic integration of Hamiltonian wave equations Numer. Math. 66 1994 465 492
    • (1994) Numer. Math. , vol.66 , pp. 465-492
    • McLachlan, R.1
  • 21
    • 0034687898 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations
    • S. Reich Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations J. Comput. Phys. 157 2000 473 499
    • (2000) J. Comput. Phys. , vol.157 , pp. 473-499
    • Reich, S.1
  • 22
    • 0000264271 scopus 로고    scopus 로고
    • Symplectic integrators for Ablowitz-Ladik discrete nonlinear Schrödinger equation
    • C.M. Schober Symplectic integrators for Ablowitz-Ladik discrete nonlinear Schrödinger equation Phys. Lett. A 259 1999 140 151
    • (1999) Phys. Lett. A , vol.259 , pp. 140-151
    • Schober, C.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.