-
1
-
-
0016992794
-
A nonlinear difference scheme and inverse scattering
-
M.J. Ablowitz, and J.F. Ladik A nonlinear difference scheme and inverse scattering Stud. Appl. Math 55 1976 213 229
-
(1976)
Stud. Appl. Math
, vol.55
, pp. 213-229
-
-
Ablowitz, M.J.1
Ladik, J.F.2
-
3
-
-
0042137401
-
Multi-symplectic structures and wave propagation
-
T.J. Bridges Multi-symplectic structures and wave propagation Math. Proc. Cam. Phil. Soc. 121 1997 147 190
-
(1997)
Math. Proc. Cam. Phil. Soc.
, vol.121
, pp. 147-190
-
-
Bridges, T.J.1
-
4
-
-
0037832748
-
Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity
-
T.J. Bridges, and S. Reich Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity Phys. Lett. A 284 2001 184 193
-
(2001)
Phys. Lett. A
, vol.284
, pp. 184-193
-
-
Bridges, T.J.1
Reich, S.2
-
5
-
-
0042315367
-
Total variation in discrete multisymplectic field theory and multisymplectic energy momentum integrators
-
J.B. Chen Total variation in discrete multisymplectic field theory and multisymplectic energy momentum integrators Lett. Math. Phys. 61 2002 63 73
-
(2002)
Lett. Math. Phys.
, vol.61
, pp. 63-73
-
-
Chen, J.B.1
-
6
-
-
0037396154
-
Total variation in Hamiltonian formalism and symplectic-energy integrators
-
J.B. Chen, H.Y. Guo, and K. Wu Total variation in Hamiltonian formalism and symplectic-energy integrators J. Math. Phys. 44 2003 1688 1702
-
(2003)
J. Math. Phys.
, vol.44
, pp. 1688-1702
-
-
Chen, J.B.1
Guo, H.Y.2
Wu, K.3
-
7
-
-
0036532037
-
Symplectic and multisymplectic methods for the nonlinear Schrödinger equation
-
J.B. Chen, M.Z. Qin, and Y.F. Tang Symplectic and multisymplectic methods for the nonlinear Schrödinger equation Comput. Math. Appl. 43 2002 1095 1106
-
(2002)
Comput. Math. Appl.
, vol.43
, pp. 1095-1106
-
-
Chen, J.B.1
Qin, M.Z.2
Tang, Y.F.3
-
8
-
-
0036644593
-
A multisymplectic variational integrator for the nonlinear Schrödinger equation
-
J.B. Chen A multisymplectic variational integrator for the nonlinear Schrödinger equation Numer. Meth. Part. Diff. Eq. 18 2002 523 536
-
(2002)
Numer. Meth. Part. Diff. Eq.
, vol.18
, pp. 523-536
-
-
Chen, J.B.1
-
12
-
-
49149137309
-
Finite-difference solutions of a nonlinear Schrödinger equation
-
M. Delfour, M. Fortin, and G. Payre Finite-difference solutions of a nonlinear Schrödinger equation J. Comput. Phys. 44 1981 277 288
-
(1981)
J. Comput. Phys.
, vol.44
, pp. 277-288
-
-
Delfour, M.1
Fortin, M.2
Payre, G.3
-
13
-
-
0000094449
-
The Poincaré-Cartan invariant in the calculus of variations
-
P.L. Garcia The Poincaré-Cartan invariant in the calculus of variations Symp. Math. 14 1974 219 246
-
(1974)
Symp. Math.
, vol.14
, pp. 219-246
-
-
Garcia, P.L.1
-
15
-
-
0028766065
-
Symplectic methods for the nonlinear Schrödinger equation
-
B.M. Herbst, F. Varadi, and M.J. Ablowitz Symplectic methods for the nonlinear Schrödinger equation Math. Comput. Simul. 37 1994 353 369
-
(1994)
Math. Comput. Simul.
, vol.37
, pp. 353-369
-
-
Herbst, B.M.1
Varadi, F.2
Ablowitz, M.J.3
-
18
-
-
0032476963
-
Multisymplectic geometry, variational integrators, and nonlinear PDEs
-
J.E. Marsden, G.W. Patrick, and S. Shkoller Multisymplectic geometry, variational integrators, and nonlinear PDEs Comm. Math. Phys. 199 1998 351 395
-
(1998)
Comm. Math. Phys.
, vol.199
, pp. 351-395
-
-
Marsden, J.E.1
Patrick, G.W.2
Shkoller, S.3
-
19
-
-
34249766017
-
Symplectic integration of Hamiltonian wave equations
-
R. McLachlan Symplectic integration of Hamiltonian wave equations Numer. Math. 66 1994 465 492
-
(1994)
Numer. Math.
, vol.66
, pp. 465-492
-
-
McLachlan, R.1
-
21
-
-
0034687898
-
Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations
-
S. Reich Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations J. Comput. Phys. 157 2000 473 499
-
(2000)
J. Comput. Phys.
, vol.157
, pp. 473-499
-
-
Reich, S.1
-
22
-
-
0000264271
-
Symplectic integrators for Ablowitz-Ladik discrete nonlinear Schrödinger equation
-
C.M. Schober Symplectic integrators for Ablowitz-Ladik discrete nonlinear Schrödinger equation Phys. Lett. A 259 1999 140 151
-
(1999)
Phys. Lett. A
, vol.259
, pp. 140-151
-
-
Schober, C.M.1
-
24
-
-
0001363641
-
Implicit spectral methods for wave propagation problems
-
S.B. Wineberg, J.F. McGrath, E.F. Gabl, L.R. Scott, and C.E. Southwell Implicit spectral methods for wave propagation problems J. Comput. Phys. 97 1991 311 336
-
(1991)
J. Comput. Phys.
, vol.97
, pp. 311-336
-
-
Wineberg, S.B.1
McGrath, J.F.2
Gabl, E.F.3
Scott, L.R.4
Southwell, C.E.5
|