메뉴 건너뛰기




Volumn 17, Issue 2, 2007, Pages 413-421

Bayesian model selection: Some thoughts on future directions

(1)  Doss, Hani a  

a NONE

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34547547387     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (6)

References (16)
  • 1
    • 33644967739 scopus 로고    scopus 로고
    • Efficient Bayes factor estimation from the reversible jump output
    • Bartolucci, F., Scaccia, L. and Mira, A. (2006). Efficient Bayes factor estimation from the reversible jump output. Biometrika 93, 41-52.
    • (2006) Biometrika , vol.93 , pp. 41-52
    • Bartolucci, F.1    Scaccia, L.2    Mira, A.3
  • 2
    • 4043150795 scopus 로고    scopus 로고
    • The interplay of Bayesian and frequentist analysis
    • Bayarri, M. J. and Berger, J. O. (2004). The interplay of Bayesian and frequentist analysis. Statist. Sci. 19, 58-80.
    • (2004) Statist. Sci , vol.19 , pp. 58-80
    • Bayarri, M.J.1    Berger, J.O.2
  • 3
    • 0000506629 scopus 로고
    • Bayesian model choice via Markov chain Monte Carlo methods
    • Carlin, B. P. and Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo methods. J. Roy. Statist. Soc. Ser. B 57, 473-484.
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 473-484
    • Carlin, B.P.1    Chib, S.2
  • 4
    • 0031527297 scopus 로고    scopus 로고
    • On Monte Carlo methods for estimating ratios of normalizing constants
    • Chen, M.-H. and Shao, Q.-M. (1997). On Monte Carlo methods for estimating ratios of normalizing constants. Ann. Statist. 25, 1563-1594.
    • (1997) Ann. Statist , vol.25 , pp. 1563-1594
    • Chen, M.-H.1    Shao, Q.-M.2
  • 5
    • 4043115647 scopus 로고    scopus 로고
    • Model uncertainty
    • Clyde, M. and George, E. I. (2004), Model uncertainty. Statist. Sci. 19, 81-94.
    • (2004) Statist. Sci , vol.19 , pp. 81-94
    • Clyde, M.1    George, E.I.2
  • 6
    • 0041696122 scopus 로고    scopus 로고
    • On Bayesian model and variable selection using MCMC
    • Dellaportas, P., Forster, J. J. and Ntzoufras, I. (2002). On Bayesian model and variable selection using MCMC. Statist. Comput. 12, 27-36.
    • (2002) Statist. Comput , vol.12 , pp. 27-36
    • Dellaportas, P.1    Forster, J.J.2    Ntzoufras, I.3
  • 7
    • 34547495420 scopus 로고    scopus 로고
    • Estimation of Bayes factors for nonparametric Bayes problems via Radon-Nikodym derivatives
    • Preprint
    • Doss, H. (2007). Estimation of Bayes factors for nonparametric Bayes problems via Radon-Nikodym derivatives. Preprint.
    • (2007)
    • Doss, H.1
  • 8
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
    • Gelman, A. and Meng, X.-L. (1998). Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statist. Sci. 13, 163-185.
    • (1998) Statist. Sci , vol.13 , pp. 163-185
    • Gelman, A.1    Meng, X.-L.2
  • 9
    • 0001729472 scopus 로고    scopus 로고
    • Calibration and empirical Bayes variable selection
    • George, E. I. and Foster, D. P. (2000). Calibration and empirical Bayes variable selection. Biometrika 87, 731-747.
    • (2000) Biometrika , vol.87 , pp. 731-747
    • George, E.I.1    Foster, D.P.2
  • 10
    • 0035591051 scopus 로고    scopus 로고
    • On the relationship between Markov chain Monte Carlo methods for model uncertainty
    • Godsill, S. J. (2001). On the relationship between Markov chain Monte Carlo methods for model uncertainty. J. Comput. Graph. Statist. 10, 230-248.
    • (2001) J. Comput. Graph. Statist , vol.10 , pp. 230-248
    • Godsill, S.J.1
  • 11
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 12
    • 0442312140 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for computing Bayes factors: A comparative review
    • Han, C. and Carlin, B. P. (2001). Markov chain Monte Carlo methods for computing Bayes factors: A comparative review. J. Amer. Statist. Assoc. 96, 1122-1132.
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 1122-1132
    • Han, C.1    Carlin, B.P.2
  • 13
    • 0043173938 scopus 로고    scopus 로고
    • A theory of statistical models for Monte Carlo integration (with discussion)
    • Kong, A., McCullagh, P., Meng, X.-L., Nicolae, D. and Tan, Z. (2003). A theory of statistical models for Monte Carlo integration (with discussion). J. Roy. Statist. Soc. B 65, 585-618.
    • (2003) J. Roy. Statist. Soc. B , vol.65 , pp. 585-618
    • Kong, A.1    McCullagh, P.2    Meng, X.-L.3    Nicolae, D.4    Tan, Z.5
  • 14
    • 21444451325 scopus 로고    scopus 로고
    • Simulating ratios of normalizing constants via a simple identity: A theoretical exploration
    • Meng, X.-L. and Wong, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: A theoretical exploration. Statist. Sinica 6, 831-860.
    • (1996) Statist. Sinica , vol.6 , pp. 831-860
    • Meng, X.-L.1    Wong, W.H.2
  • 15
    • 59349096892 scopus 로고    scopus 로고
    • Quantifying the fraction of missing information for hypothesis testing in statistical and genetic studies (with discussion)
    • to appear
    • Nicolae, D., Meng, X.-L. and Kong, A. (2007). Quantifying the fraction of missing information for hypothesis testing in statistical and genetic studies (with discussion). Statist. Sci. (to appear).
    • (2007) Statist. Sci
    • Nicolae, D.1    Meng, X.-L.2    Kong, A.3
  • 16
    • 0002817906 scopus 로고
    • On assessing prior distributions and Bayesian regression analysis with g-prior distributions
    • Edited by P. K. Goel and A. Zellner, Elsevier, Amsterdam
    • Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti (Edited by P. K. Goel and A. Zellner) 233-243. Elsevier, Amsterdam.
    • (1986) Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti , pp. 233-243
    • Zellner, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.