-
2
-
-
3242706047
-
-
For recent reviews on this topic see: a
-
For recent reviews on this topic see: a) T. Moriuchi, T. Hirao, Chem. Soc. Rev. 2004, 33, 294-301;
-
(2004)
Chem. Soc. Rev
, vol.33
, pp. 294-301
-
-
Moriuchi, T.1
Hirao, T.2
-
3
-
-
11144306533
-
-
b) W. A. Loughlin, J. D. A. Tyndall, M. P. Glenn, D. P. Fairlie, Chem. Rev. 2004, 104, 6085-6118;
-
(2004)
Chem. Rev
, vol.104
, pp. 6085-6118
-
-
Loughlin, W.A.1
Tyndall, J.D.A.2
Glenn, M.P.3
Fairlie, D.P.4
-
4
-
-
0032978519
-
-
c) P. Chitnumsub, W. R. Fiori, H. A. Lashuel, H. Diaz, J. W. Kelly, Bioorg. Med. Chem. 1999, 7, 39-59;
-
(1999)
Bioorg. Med. Chem
, vol.7
, pp. 39-59
-
-
Chitnumsub, P.1
Fiori, W.R.2
Lashuel, H.A.3
Diaz, H.4
Kelly, J.W.5
-
5
-
-
0033179059
-
-
d) E. Lacroix, T. Kortemme, M. Lopez de la Paz, L. Serrano, Curr. Opin. Struct. Biol. 1999, 9, 487-493;
-
(1999)
Curr. Opin. Struct. Biol
, vol.9
, pp. 487-493
-
-
Lacroix, E.1
Kortemme, T.2
Lopez de la Paz, M.3
Serrano, L.4
-
6
-
-
0032705432
-
-
e) K. D. Stigers, M. J. Soth, J. S. Nowick, Curr. Opin. Chem. Biol. 1999, 3, 714-723;
-
(1999)
Curr. Opin. Chem. Biol
, vol.3
, pp. 714-723
-
-
Stigers, K.D.1
Soth, M.J.2
Nowick, J.S.3
-
12
-
-
20844432379
-
-
Some recent examples:a M. Kruppa, C. Bonauer, V. Michlova, B. Koenig, J. Org. Chem. 2005, 70, 5305-5308;
-
Some recent examples:a) M. Kruppa, C. Bonauer, V. Michlova, B. Koenig, J. Org. Chem. 2005, 70, 5305-5308;
-
-
-
-
13
-
-
0035835087
-
-
b) T. Moriuchi, V. Nomoto, K. Yoshida, A. Ogawa, T. Hirao, J. Am. Chem. Soc. 2001, 123, 68-75;
-
(2001)
J. Am. Chem. Soc
, vol.123
, pp. 68-75
-
-
Moriuchi, T.1
Nomoto, V.2
Yoshida, K.3
Ogawa, A.4
Hirao, T.5
-
14
-
-
0002006857
-
-
c) A. Nomoto, T. Moriuchi, S. Yamazaki, A. Ogawa, T. Hirao, Chem. Commun. 1998, 1963-1964.
-
(1998)
Chem. Commun
, pp. 1963-1964
-
-
Nomoto, A.1
Moriuchi, T.2
Yamazaki, S.3
Ogawa, A.4
Hirao, T.5
-
17
-
-
0037042251
-
-
c) J. S. Nowick, S. K. Lam, T. V. Khasanova, W. E. Kemnitzer, S. Maitra, H. T. Mee, R. Liu, J. Am. Chem. Soc. 2002, 124, 4972-4973;
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 4972-4973
-
-
Nowick, J.S.1
Lam, S.K.2
Khasanova, T.V.3
Kemnitzer, W.E.4
Maitra, S.5
Mee, H.T.6
Liu, R.7
-
18
-
-
0034710480
-
-
d) B. R. Huck, J. D. Fisk, S. H. Gellman, Org. Lett. 2000, 2, 2607-2610.
-
(2000)
Org. Lett
, vol.2
, pp. 2607-2610
-
-
Huck, B.R.1
Fisk, J.D.2
Gellman, S.H.3
-
19
-
-
0034647202
-
-
For example, the rigid NG or D-Pro-Gly turn elements have been used in this context:a J. D. Fisk, D. R. Powell, S. H. Gellman, J. Am. Chem. Soc. 2000, 122, 5443-5447;
-
For example, the rigid NG or D-Pro-Gly turn elements have been used in this context:a) J. D. Fisk, D. R. Powell, S. H. Gellman, J. Am. Chem. Soc. 2000, 122, 5443-5447;
-
-
-
-
20
-
-
0032741984
-
-
b) E. De Alba, M. Rico, M. A. Jimenez, Protein Sci. 1999, 8, 2234-2244;
-
(1999)
Protein Sci
, vol.8
, pp. 2234-2244
-
-
De Alba, E.1
Rico, M.2
Jimenez, M.A.3
-
23
-
-
1842403587
-
-
e) E. De Alba, M. A. Jimenez, M. Rico, J. Am. Chem. Soc. 1997, 119, 175-183.
-
(1997)
J. Am. Chem. Soc
, vol.119
, pp. 175-183
-
-
De Alba, E.1
Jimenez, M.A.2
Rico, M.3
-
24
-
-
0041866611
-
-
Charge interactions between side chain residues, but not the chain ends, have also been used to stabilize secondary structures in larger peptides: a B. Ciani, M. Jourdan, M. S. Searle, J. Am. Chem. Soc. 2003, 125, 9038-9047;
-
Charge interactions between side chain residues - but not the chain ends - have also been used to stabilize secondary structures in larger peptides: a) B. Ciani, M. Jourdan, M. S. Searle, J. Am. Chem. Soc. 2003, 125, 9038-9047;
-
-
-
-
31
-
-
0036009284
-
-
b) R. J. Fitzmaurice, G. M. Kyne, D. Douheret, J. D. Kilburn, J. Chem. Soc, Perkin Trans. 1 2002, 841-864.
-
(2002)
J. Chem. Soc, Perkin Trans. 1
, pp. 841-864
-
-
Fitzmaurice, R.J.1
Kyne, G.M.2
Douheret, D.3
Kilburn, J.D.4
-
32
-
-
2742581691
-
-
J.-F. Pons, J.-L. Fauchére, F. Lamaty, A. Molla, R. Lazaro, Eur. J. Org. Chem. 1998, 853-859.
-
(1998)
Eur. J. Org. Chem
, pp. 853-859
-
-
Pons, J.-F.1
Fauchére, J.-L.2
Lamaty, F.3
Molla, A.4
Lazaro, R.5
-
33
-
-
32244434436
-
-
Pyrrolecarboxylic acid 5 was obtained from the corresponding benzyl ester after hydrogenolysis: C. Schmuck, T. Rehm, F. Grohn, F. Klein, F. Reinhold, J. Am. Chem. Soc. 2006, 128, 1431-1431.
-
Pyrrolecarboxylic acid 5 was obtained from the corresponding benzyl ester after hydrogenolysis: C. Schmuck, T. Rehm, F. Grohn, F. Klein, F. Reinhold, J. Am. Chem. Soc. 2006, 128, 1431-1431.
-
-
-
-
34
-
-
34447540641
-
-
Unfortunately, due to signal overlap of the α-CHs with the OH signal of the solvent only the coupling constants of the amino acid amide NHs could be analysed reliably
-
Unfortunately, due to signal overlap of the α-CHs with the OH signal of the solvent only the coupling constants of the amino acid amide NHs could be analysed reliably.
-
-
-
-
35
-
-
34447511977
-
-
As the exchange rate of both amides in the protected monomer 9 is very similar, the observed difference in 10 can not be due to a different intrinsic reativity caused by the different steric environment around the two amide NHs but must result form different H-bond features.
-
As the exchange rate of both amides in the protected monomer 9 is very similar, the observed difference in 10 can not be due to a different intrinsic reativity caused by the different steric environment around the two amide NHs but must result form different H-bond features.
-
-
-
-
36
-
-
84986437005
-
-
F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson, W. C. Still, J. Comput. Chem. 1990, 11, 440-467.
-
(1990)
J. Comput. Chem
, vol.11
, pp. 440-467
-
-
Mohamadi, F.1
Richards, N.G.J.2
Guida, W.C.3
Liskamp, R.4
Lipton, M.5
Caufield, C.6
Chang, G.7
Hendrickson, T.8
Still, W.C.9
-
37
-
-
34447513535
-
-
The energy minimized structure in Figure 4 as obtained from the force field calculations contains one cis-amide linkage. Intramolecular ion pairing is not possible in the same way if that amide adopts a trans conformation. At least there is no energy minimum within 20 kJ/mol of the one shown here, which contains a trans linkage. Hence, the energetical cost for cis-amide formation is obviously more than overcome by the strong intramolecular ion pairing.
-
The energy minimized structure in Figure 4 as obtained from the force field calculations contains one cis-amide linkage. Intramolecular ion pairing is not possible in the same way if that amide adopts a trans conformation. At least there is no energy minimum within 20 kJ/mol of the one shown here, which contains a trans linkage. Hence, the energetical cost for cis-amide formation is obviously more than overcome by the strong intramolecular ion pairing.
-
-
-
-
38
-
-
34447502797
-
-
1H NMR spectra of 10 do not change upon the addition of up to 50% water to the methanol solution. With even higher water contents precipitation occurs. Even though the exchanging acidic NH protons, which are most diagnostic for ion pairing, cannot be observed in the presence of water, there are no noticeable shift changes for any proton, suggesting that the loop most likely also exists in water/methanol mixtures.
-
1H NMR spectra of 10 do not change upon the addition of up to 50% water to the methanol solution. With even higher water contents precipitation occurs. Even though the exchanging acidic NH protons, which are most diagnostic for ion pairing, cannot be observed in the presence of water, there are no noticeable shift changes for any proton, suggesting that the loop most likely also exists in water/methanol mixtures.
-
-
-
|