메뉴 건너뛰기




Volumn 14, Issue 4, 2007, Pages 330-336

The beauty of asymmetry: Asymmetric divisions and self-renewal in the haematopoietic system

Author keywords

Asymmetric cell division; Differentiation; Haematopoietic stem cell; Microenvironment; Self renewal

Indexed keywords

CELL ADHESION MOLECULE; CHEMOKINE;

EID: 34249678436     PISSN: 10656251     EISSN: 15317048     Source Type: Journal    
DOI: 10.1097/MOH.0b013e3281900f12     Document Type: Review
Times cited : (48)

References (66)
  • 2
    • 0035223205 scopus 로고    scopus 로고
    • Asymmetric cell division during animal development
    • Knoblich JA. Asymmetric cell division during animal development. Nat Rev Mol Cell Biol 2001; 2:11-20.
    • (2001) Nat Rev Mol Cell Biol , vol.2 , pp. 11-20
    • Knoblich, J.A.1
  • 3
    • 0026601244 scopus 로고
    • Mechanisms of asymmetric cell division: Two Bs or not two Bs, that is the question
    • Horvitz HR, Herskowitz I. Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 1992; 68:237-255.
    • (1992) Cell , vol.68 , pp. 237-255
    • Horvitz, H.R.1    Herskowitz, I.2
  • 4
    • 33745600820 scopus 로고    scopus 로고
    • Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006; 441:1068-1074. This review illustrates facultative use of either symmetric or asymmetric cell division in stem cells. Asymmetric division is a tool that stem cells can use to maintain the appropriate number of progeny, whereas the transition to symmetric divisions is also crucial for adult regenerative capacity.
    • Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006; 441:1068-1074. This review illustrates facultative use of either symmetric or asymmetric cell division in stem cells. Asymmetric division is a tool that stem cells can use to maintain the appropriate number of progeny, whereas the transition to symmetric divisions is also crucial for adult regenerative capacity.
  • 5
    • 12344294666 scopus 로고    scopus 로고
    • Kinetics and symmetry of divisions of hematopoietic stem cells
    • Ho AD. Kinetics and symmetry of divisions of hematopoietic stem cells. Exp Hematol 2005; 33:1-8.
    • (2005) Exp Hematol , vol.33 , pp. 1-8
    • Ho, A.D.1
  • 6
    • 0026655353 scopus 로고
    • Clonal analysis of hematopoietic stem cell development in vivo
    • Keller G. Clonal analysis of hematopoietic stem cell development in vivo. Curr Top Microbiol Immunol 1992; 177:41-57.
    • (1992) Curr Top Microbiol Immunol , vol.177 , pp. 41-57
    • Keller, G.1
  • 7
    • 0032814555 scopus 로고    scopus 로고
    • The notch signaling pathway is required to specify muscle progenitor cells in Drosophila
    • Giebel B. The notch signaling pathway is required to specify muscle progenitor cells in Drosophila. Mech Dev 1999; 86:137-145.
    • (1999) Mech Dev , vol.86 , pp. 137-145
    • Giebel, B.1
  • 8
    • 0036778127 scopus 로고    scopus 로고
    • CSL-independent Notch signalling: A checkpoint in cell fate decisions during development?
    • Martinez AA, Zecchini V, Brennan K. CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr Opin Genet Dev 2002; 12:524-533.
    • (2002) Curr Opin Genet Dev , vol.12 , pp. 524-533
    • Martinez, A.A.1    Zecchini, V.2    Brennan, K.3
  • 9
    • 0030156515 scopus 로고    scopus 로고
    • Cell division: Why daughters cannot be like their mothers
    • Chang F, Drubin DG. Cell division: why daughters cannot be like their mothers. Curr Biol 1996; 6:651-654.
    • (1996) Curr Biol , vol.6 , pp. 651-654
    • Chang, F.1    Drubin, D.G.2
  • 10
    • 0032447692 scopus 로고    scopus 로고
    • Asymmetric cell division: From A to Z
    • Hawkins N, Garriga G. Asymmetric cell division: from A to Z. Genes Dev 1998; 12:3625-3638.
    • (1998) Genes Dev , vol.12 , pp. 3625-3638
    • Hawkins, N.1    Garriga, G.2
  • 11
    • 0342327350 scopus 로고    scopus 로고
    • Neuroblasts: A model for the asymmetric division of stem cells
    • Lin H, Schagat T. Neuroblasts: a model for the asymmetric division of stem cells. Trends Genet 1997; 13:33-39.
    • (1997) Trends Genet , vol.13 , pp. 33-39
    • Lin, H.1    Schagat, T.2
  • 12
    • 0030199973 scopus 로고    scopus 로고
    • Control of daughter cell fates during asymmetric division: Interaction of Numb and Notch
    • Guo M, Jan LY, Jan YN. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 1996; 17:27-41.
    • (1996) Neuron , vol.17 , pp. 27-41
    • Guo, M.1    Jan, L.Y.2    Jan, Y.N.3
  • 13
    • 0035916830 scopus 로고    scopus 로고
    • Asymmetric cell division: Plane but not simple
    • Adler PN, Taylor J. Asymmetric cell division: plane but not simple. Curr Biol 2001; 11:R233-R236.
    • (2001) Curr Biol , vol.11
    • Adler, P.N.1    Taylor, J.2
  • 14
    • 0024980213 scopus 로고
    • Numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos
    • Uemura T, Shepherd S, Ackerman L, et al. Numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 1989; 58:349-360.
    • (1989) Cell , vol.58 , pp. 349-360
    • Uemura, T.1    Shepherd, S.2    Ackerman, L.3
  • 15
    • 33846513022 scopus 로고    scopus 로고
    • aPKC-mediated phosphorylation regulates asymmetric membrane localization of the cell fate determinant Numb
    • Smith CA, Lau KM, Rahmani Z, et al. aPKC-mediated phosphorylation regulates asymmetric membrane localization of the cell fate determinant Numb. EMBO J 2007; 26:468-480.
    • (2007) EMBO J , vol.26 , pp. 468-480
    • Smith, C.A.1    Lau, K.M.2    Rahmani, Z.3
  • 16
    • 0028785304 scopus 로고
    • Asymmetric segregation of the homeodomain protein Prospero during Drosophila development
    • Hirata J, Nakagoshi H, Nabeshima Y, Matsuzaki F. Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature 1995; 377:627-630.
    • (1995) Nature , vol.377 , pp. 627-630
    • Hirata, J.1    Nakagoshi, H.2    Nabeshima, Y.3    Matsuzaki, F.4
  • 17
    • 0028818805 scopus 로고
    • Asymmetric segregation of Numb and Prospero during cell division
    • Knoblich JA, Jan LY, Jan YN. Asymmetric segregation of Numb and Prospero during cell division. Nature 1995; 377:624-627.
    • (1995) Nature , vol.377 , pp. 624-627
    • Knoblich, J.A.1    Jan, L.Y.2    Jan, Y.N.3
  • 18
    • 0030745426 scopus 로고    scopus 로고
    • Inscuteable and Staufen mediate asymmetric localization and segregation of prospero RNA during Drosophila neuroblast cell divisions
    • Li P, Yang X, Wasser M, et al. Inscuteable and Staufen mediate asymmetric localization and segregation of prospero RNA during Drosophila neuroblast cell divisions. Cell 1997; 90:437-447.
    • (1997) Cell , vol.90 , pp. 437-447
    • Li, P.1    Yang, X.2    Wasser, M.3
  • 19
    • 0032516178 scopus 로고    scopus 로고
    • Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila
    • Gho M, Schweisguth F. Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila. Nature 1998; 393:178-181.
    • (1998) Nature , vol.393 , pp. 178-181
    • Gho, M.1    Schweisguth, F.2
  • 20
    • 0028670620 scopus 로고
    • Delta-notch signaling and Drosophila cell fate choice
    • Muskavitch MA. Delta-notch signaling and Drosophila cell fate choice. Dev Biol 1994; 166:415-430.
    • (1994) Dev Biol , vol.166 , pp. 415-430
    • Muskavitch, M.A.1
  • 21
    • 33846607211 scopus 로고    scopus 로고
    • Yamashita YM, Mahowald AP, Perlin JR, Fuller MT. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 2007; 315:518-521. During the division of a germline stem cell in Drosophila testis, the mother centrosome remains adjacent to the stromal cell, named the hub. The stem cell permanently retains the mother centrosome across many cell divisions, thus ensuring asymmetric division. The investigators have also shown that the mother centrosomes remained anchored to the stem cell niche interface throughout the cell cycle by attachment to astral microtubules connected to adherence junction. Differential centrosomal inheritance is therefore essential to stem cell biology.
    • Yamashita YM, Mahowald AP, Perlin JR, Fuller MT. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 2007; 315:518-521. During the division of a germline stem cell in Drosophila testis, the mother centrosome remains adjacent to the stromal cell, named the hub. The stem cell permanently retains the mother centrosome across many cell divisions, thus ensuring asymmetric division. The investigators have also shown that the mother centrosomes remained anchored to the stem cell niche interface throughout the cell cycle by attachment to astral microtubules connected to adherence junction. Differential centrosomal inheritance is therefore essential to stem cell biology.
  • 22
    • 33846638199 scopus 로고    scopus 로고
    • Developmental biology. The mother of all stem cells?
    • Spradling AC, Zheng Y. Developmental biology. The mother of all stem cells? Science 2007; 315:469-470.
    • (2007) Science , vol.315 , pp. 469-470
    • Spradling, A.C.1    Zheng, Y.2
  • 23
    • 0029080470 scopus 로고
    • Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis
    • Chenn A, McConnell SK. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 1995; 82:631-641.
    • (1995) Cell , vol.82 , pp. 631-641
    • Chenn, A.1    McConnell, S.K.2
  • 24
    • 0036897569 scopus 로고    scopus 로고
    • Asymmetric segregation of Numb: A mechanism for neural specification from Drosophila to mammals
    • Cayouette M, Raff M. Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals. Nat Neurosci 2002; 5:1265-1269.
    • (2002) Nat Neurosci , vol.5 , pp. 1265-1269
    • Cayouette, M.1    Raff, M.2
  • 25
    • 33644634930 scopus 로고    scopus 로고
    • The enigma of the numb-Notch relationship during mammalian embryogenesis
    • Petersen PH, Tang H, Zou K, Zhong W. The enigma of the numb-Notch relationship during mammalian embryogenesis. Dev Neurosci 2006; 28:156-168.
    • (2006) Dev Neurosci , vol.28 , pp. 156-168
    • Petersen, P.H.1    Tang, H.2    Zou, K.3    Zhong, W.4
  • 26
    • 0031058652 scopus 로고    scopus 로고
    • Asymmetric division and polarity of neuroepithelial cells
    • Huttner WB, Brand M. Asymmetric division and polarity of neuroepithelial cells. Curr Opin Neurobiol 1997; 7:29-39.
    • (1997) Curr Opin Neurobiol , vol.7 , pp. 29-39
    • Huttner, W.B.1    Brand, M.2
  • 27
    • 3042541528 scopus 로고    scopus 로고
    • Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells
    • Kosodo Y, Roper K, Haubensak W, et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J 2004; 23:2314-2324.
    • (2004) EMBO J , vol.23 , pp. 2314-2324
    • Kosodo, Y.1    Roper, K.2    Haubensak, W.3
  • 28
    • 0021131137 scopus 로고
    • Analysis of differentiation of mouse hemopoietic stem cells in culture by sequential replating of paired progenitors
    • Suda J, Suda T, Ogawa M. Analysis of differentiation of mouse hemopoietic stem cells in culture by sequential replating of paired progenitors. Blood 1984; 64:393-399.
    • (1984) Blood , vol.64 , pp. 393-399
    • Suda, J.1    Suda, T.2    Ogawa, M.3
  • 29
    • 0021418563 scopus 로고
    • Disparate differentiation in mouse hemopoietic colonies derived from paired progenitors
    • Suda T, Suda J, Ogawa M. Disparate differentiation in mouse hemopoietic colonies derived from paired progenitors. Proc Natl Acad Sci USA 1984; 81:2520-2524.
    • (1984) Proc Natl Acad Sci USA , vol.81 , pp. 2520-2524
    • Suda, T.1    Suda, J.2    Ogawa, M.3
  • 30
    • 0021701872 scopus 로고
    • Single cell origin of multilineage colonies in culture. Evidence that differentiation of multipotent progenitors and restriction of proliferative potential of monopotent progenitors are stochastic processes
    • Leary AG, Ogawa M, Strauss LC, Civin CI. Single cell origin of multilineage colonies in culture. Evidence that differentiation of multipotent progenitors and restriction of proliferative potential of monopotent progenitors are stochastic processes. J Clin Invest 1984; 74:2193-2197.
    • (1984) J Clin Invest , vol.74 , pp. 2193-2197
    • Leary, A.G.1    Ogawa, M.2    Strauss, L.C.3    Civin, C.I.4
  • 31
    • 0021868510 scopus 로고
    • Disparate differentiation in hemopoietic colonies derived from human paired progenitors
    • Leary AG, Strauss LC, Civin CI, Ogawa M. Disparate differentiation in hemopoietic colonies derived from human paired progenitors. Blood 1985; 66:327-332.
    • (1985) Blood , vol.66 , pp. 327-332
    • Leary, A.G.1    Strauss, L.C.2    Civin, C.I.3    Ogawa, M.4
  • 32
    • 0027375186 scopus 로고
    • Lineage commitment in human hemopoiesis involves asymmetric cell division of multipotent progenitors and does not appear to be influenced by cytokines
    • Mayani H, Dragowska W, Lansdorp PM. Lineage commitment in human hemopoiesis involves asymmetric cell division of multipotent progenitors and does not appear to be influenced by cytokines. J Cell Physiol 1993; 157:579-586.
    • (1993) J Cell Physiol , vol.157 , pp. 579-586
    • Mayani, H.1    Dragowska, W.2    Lansdorp, P.M.3
  • 33
    • 0032555903 scopus 로고    scopus 로고
    • Asymmetric cell divisions sustain long-term hematopoiesis from single-sorted human fetal liver cells
    • Brummendorf TH, Dragowska W, Zijlmans JMJM, et al. Asymmetric cell divisions sustain long-term hematopoiesis from single-sorted human fetal liver cells. J Exp Med 1998; 188:1117-1124.
    • (1998) J Exp Med , vol.188 , pp. 1117-1124
    • Brummendorf, T.H.1    Dragowska, W.2    Zijlmans, J.M.J.M.3
  • 34
    • 0032830148 scopus 로고    scopus 로고
    • Symmetry of initial cell divisions among primitive hematopoietic progenitors is independent of ontogenic age and regulatory molecules
    • Huang S, Law P, Francis K, et al. Symmetry of initial cell divisions among primitive hematopoietic progenitors is independent of ontogenic age and regulatory molecules. Blood 1999; 94:2595-2604.
    • (1999) Blood , vol.94 , pp. 2595-2604
    • Huang, S.1    Law, P.2    Francis, K.3
  • 35
    • 0037385037 scopus 로고    scopus 로고
    • The symmetry of initial divisions of human hematopoietic progenitors is altered only by the cellular microenvironment
    • Punzel M, Liu D, Zhang T, et al. The symmetry of initial divisions of human hematopoietic progenitors is altered only by the cellular microenvironment. Exp Hematol 2003; 31:339-347.
    • (2003) Exp Hematol , vol.31 , pp. 339-347
    • Punzel, M.1    Liu, D.2    Zhang, T.3
  • 37
    • 33344475670 scopus 로고    scopus 로고
    • Giebel B, Zhang T, Beckmann J, et al. Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division. Blood 2006; 107:2146-2152. Upon initial division of primitive HSCs, the two daughter cells were separated and tested for their developmental capacity. Surprisingly, the vast majority of the most primitive progenitor cells gave rise to daughter cells that adopt different cell fates. This work supports the model of asymmetric cell division in which one daughter cell becomes more specialized whereas the other adopts the fate of the mother cell.
    • Giebel B, Zhang T, Beckmann J, et al. Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division. Blood 2006; 107:2146-2152. Upon initial division of primitive HSCs, the two daughter cells were separated and tested for their developmental capacity. Surprisingly, the vast majority of the most primitive progenitor cells gave rise to daughter cells that adopt different cell fates. This work supports the model of asymmetric cell division in which one daughter cell becomes more specialized whereas the other adopts the fate of the mother cell.
  • 38
    • 0035874515 scopus 로고    scopus 로고
    • The relative quiescence of hematopoietic stem cells in nonhuman primates
    • Mahmud N, Devine SM, Weller KP, et al. The relative quiescence of hematopoietic stem cells in nonhuman primates. Blood 2001; 97:3061-3068.
    • (2001) Blood , vol.97 , pp. 3061-3068
    • Mahmud, N.1    Devine, S.M.2    Weller, K.P.3
  • 39
    • 0034629129 scopus 로고    scopus 로고
    • Hematopoietic stem cell quiescence maintained by p21cip1/waf1
    • Cheng T, Rodrigues N, Shen H, et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000; 287:1804-1808.
    • (2000) Science , vol.287 , pp. 1804-1808
    • Cheng, T.1    Rodrigues, N.2    Shen, H.3
  • 40
    • 0030052619 scopus 로고    scopus 로고
    • Retention of quiescent hematopoietic cells with high proliferative potential during ex vivo stem cell culture
    • Young JC, Varma A, DiGiusto D, Backer MP. Retention of quiescent hematopoietic cells with high proliferative potential during ex vivo stem cell culture. Blood 1996; 87:545-556.
    • (1996) Blood , vol.87 , pp. 545-556
    • Young, J.C.1    Varma, A.2    DiGiusto, D.3    Backer, M.P.4
  • 41
    • 0032528354 scopus 로고    scopus 로고
    • Lineage commitment and maturation in hematopoietic cells: The case for extrinsic regulation
    • Metcalf D. Lineage commitment and maturation in hematopoietic cells: the case for extrinsic regulation. Blood 1998; 92:345-347.
    • (1998) Blood , vol.92 , pp. 345-347
    • Metcalf, D.1
  • 42
    • 0028965127 scopus 로고
    • lo human marrow cells after in vitro cytokine exposure
    • lo human marrow cells after in vitro cytokine exposure. Blood 1995; 85:1480-1487.
    • (1995) Blood , vol.85 , pp. 1480-1487
    • Reems, J.A.1    Torok-Storb, B.2
  • 45
    • 3242681999 scopus 로고    scopus 로고
    • Molecular evidence for stem cell function of the slow-dividing fraction among human hematopoietic progenitor cells by genome-wide analysis
    • Wagner W, Ansorge A, Wirkner U, et al. Molecular evidence for stem cell function of the slow-dividing fraction among human hematopoietic progenitor cells by genome-wide analysis. Blood 2004; 104:675-686.
    • (2004) Blood , vol.104 , pp. 675-686
    • Wagner, W.1    Ansorge, A.2    Wirkner, U.3
  • 46
    • 25444431758 scopus 로고    scopus 로고
    • Retroviral integration sites correlate with expressed genes in hematopoietic stem cells
    • Wagner W, Laufs S, Blake J, et al. Retroviral integration sites correlate with expressed genes in hematopoietic stem cells. Stem Cells 2005; 23:1050-1058.
    • (2005) Stem Cells , vol.23 , pp. 1050-1058
    • Wagner, W.1    Laufs, S.2    Blake, J.3
  • 47
    • 0037130961 scopus 로고    scopus 로고
    • A stem cell molecular signature
    • Ivanova NB, Dimos JT, Schaniel C, et al. A stem cell molecular signature. Science 2002; 298:601-604.
    • (2002) Science , vol.298 , pp. 601-604
    • Ivanova, N.B.1    Dimos, J.T.2    Schaniel, C.3
  • 48
    • 0037131389 scopus 로고    scopus 로고
    • Stemness': Transcriptional profiling of embryonic and adult stem cells
    • Ramalho-Santos M, Yoon S, Matsuzaki Y, et al. 'Stemness': transcriptional profiling of embryonic and adult stem cells. Science 2002; 298:597-600.
    • (2002) Science , vol.298 , pp. 597-600
    • Ramalho-Santos, M.1    Yoon, S.2    Matsuzaki, Y.3
  • 49
    • 3042820902 scopus 로고    scopus 로고
    • Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells
    • Georgantas RW III, Tanadve V, Malehorn M, et al. Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells. Cancer Res 2004; 64:4434-4441.
    • (2004) Cancer Res , vol.64 , pp. 4434-4441
    • Georgantas III, R.W.1    Tanadve, V.2    Malehorn, M.3
  • 50
    • 33645469482 scopus 로고    scopus 로고
    • Moore KA, Lemischka IR. Stem cells and their niches. Science 2006; 311:1880-1885. This review summarizes the intrinsic and extrinsic cellular mechanisms that regulate the balance between self-renewal and differentiation of stem cells.
    • Moore KA, Lemischka IR. Stem cells and their niches. Science 2006; 311:1880-1885. This review summarizes the intrinsic and extrinsic cellular mechanisms that regulate the balance between self-renewal and differentiation of stem cells.
  • 51
    • 0242363225 scopus 로고    scopus 로고
    • Identification of the haematopoietic stem cell niche and control of the niche size
    • Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425:836-841.
    • (2003) Nature , vol.425 , pp. 836-841
    • Zhang, J.1    Niu, C.2    Ye, L.3
  • 52
    • 33644827383 scopus 로고    scopus 로고
    • Bone-marrow haematopoietic-stem-cell niches
    • This review summarizes recent progress in characterizing the composition of the HSC niche. Crosstalk between HSCs and the cellular constituents of the niches controls stem cell function
    • Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006; 6:93-106. This review summarizes recent progress in characterizing the composition of the HSC niche. Crosstalk between HSCs and the cellular constituents of the niches controls stem cell function.
    • (2006) Nat Rev Immunol , vol.6 , pp. 93-106
    • Wilson, A.1    Trumpp, A.2
  • 53
    • 55449106913 scopus 로고    scopus 로고
    • Differential expression of novel potential regulators in hematopoietic stem cells
    • Forsberg EC, Prohaska SS, Katzman S, et al. Differential expression of novel potential regulators in hematopoietic stem cells. PLoS Genet 2005; 1:e28.
    • (2005) PLoS Genet , vol.1
    • Forsberg, E.C.1    Prohaska, S.S.2    Katzman, S.3
  • 54
    • 25444523505 scopus 로고    scopus 로고
    • Hematopoietic progenitor cells and cellular microenvironment: Behavioral and molecular changes upon interaction
    • Wagner W, Saffrich R, Wirkner U, et al. Hematopoietic progenitor cells and cellular microenvironment: behavioral and molecular changes upon interaction. Stem Cells 2005; 23:1180-1191.
    • (2005) Stem Cells , vol.23 , pp. 1180-1191
    • Wagner, W.1    Saffrich, R.2    Wirkner, U.3
  • 55
    • 33846444324 scopus 로고    scopus 로고
    • Adhesion of hematopoietic progenitor cells to human mesenchymal stem cells as a model for cell-cell interaction
    • Wagner W, Wein F, Roderburg C, et al. Adhesion of hematopoietic progenitor cells to human mesenchymal stem cells as a model for cell-cell interaction. Exp Hematol 2007; 35:314-325.
    • (2007) Exp Hematol , vol.35 , pp. 314-325
    • Wagner, W.1    Wein, F.2    Roderburg, C.3
  • 56
    • 0036521595 scopus 로고    scopus 로고
    • Functional characterization of podia formation in normal and malignant hematopoietic cells
    • Fruehauf S, Srbic K, Seggewiss R, et al. Functional characterization of podia formation in normal and malignant hematopoietic cells. J Leukoc Biol 2002; 71:425-432.
    • (2002) J Leukoc Biol , vol.71 , pp. 425-432
    • Fruehauf, S.1    Srbic, K.2    Seggewiss, R.3
  • 57
    • 0017694555 scopus 로고
    • Conditions controlling the proliferation of haemopoietic stem cells in vitro
    • Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 1977; 91:335-344.
    • (1977) J Cell Physiol , vol.91 , pp. 335-344
    • Dexter, T.M.1    Allen, T.D.2    Lajtha, L.G.3
  • 58
    • 0036458679 scopus 로고    scopus 로고
    • +/CD38-early progenitors cultured over human MSCs as a feeder layer
    • +/CD38-early progenitors cultured over human MSCs as a feeder layer. Stem Cells 2002; 20:573-582.
    • (2002) Stem Cells , vol.20 , pp. 573-582
    • Kadereit, S.1    Deeds, L.S.2    Haynesworth, S.E.3
  • 59
    • 0036000649 scopus 로고    scopus 로고
    • Ex vivo expansion of human UC blood primitive hematopoietic progenitors and transplantable stem cells using human primary BM stromal cells and human AB serum
    • Yamaguchi M, Hirayama F, Murahashi H, et al. Ex vivo expansion of human UC blood primitive hematopoietic progenitors and transplantable stem cells using human primary BM stromal cells and human AB serum. Cytotherapy 2002; 4:109-118.
    • (2002) Cytotherapy , vol.4 , pp. 109-118
    • Yamaguchi, M.1    Hirayama, F.2    Murahashi, H.3
  • 60
    • 33344478513 scopus 로고    scopus 로고
    • Muguruma Y, Yahata T, Miyatake H, et al. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood 2006; 107:1878-1887. Human HSCs interacted with human MSCs following intramedullary transplantation of bothe into the bone marrow of nonobese diabetic/severe combined immune deficient mice. Human MSC-derived cells contributed significantly to the maintenance of human haematopoiesis in a xenogenic transplant model.
    • Muguruma Y, Yahata T, Miyatake H, et al. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood 2006; 107:1878-1887. Human HSCs interacted with human MSCs following intramedullary transplantation of bothe into the bone marrow of nonobese diabetic/severe combined immune deficient mice. Human MSC-derived cells contributed significantly to the maintenance of human haematopoiesis in a xenogenic transplant model.
  • 61
    • 33847657159 scopus 로고    scopus 로고
    • Gottschling S, Saffrich R, Seckinger A, et al. Human mesenchymal stroma cells regulate initial self-renewing divisions of hematopoietic progenitor cells by a beta1-integrin-dependent mechanism. Stem Cells 2007; 25: 798-806. Human MSCs are able to induce self-renewing divisions of haematopoietic progenitor cells by an integrin β1-dependent mechanism. Thus, cell-cell interaction with the cellular microenvironment plays a crucial role in the regulation of asymmetric cell division
    • 1-dependent mechanism. Thus, cell-cell interaction with the cellular microenvironment plays a crucial role in the regulation of asymmetric cell division.
  • 62
    • 27544441193 scopus 로고    scopus 로고
    • Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood
    • Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005; 33:1402-1416.
    • (2005) Exp Hematol , vol.33 , pp. 1402-1416
    • Wagner, W.1    Wein, F.2    Seckinger, A.3
  • 63
    • 27144443385 scopus 로고    scopus 로고
    • Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells
    • Dar A, Goichberg P, Shinder V, et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol 2005; 6:1038-1046.
    • (2005) Nat Immunol , vol.6 , pp. 1038-1046
    • Dar, A.1    Goichberg, P.2    Shinder, V.3
  • 64
    • 20944440068 scopus 로고    scopus 로고
    • Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist
    • Broxmeyer HE, Orschell CM, Clapp DW, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005; 201:1307-1318.
    • (2005) J Exp Med , vol.201 , pp. 1307-1318
    • Broxmeyer, H.E.1    Orschell, C.M.2    Clapp, D.W.3
  • 65
    • 3242754448 scopus 로고    scopus 로고
    • Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity
    • Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004; 5:738-743.
    • (2004) Nat Immunol , vol.5 , pp. 738-743
    • Hope, K.J.1    Jin, L.2    Dick, J.E.3
  • 66
    • 33749515476 scopus 로고    scopus 로고
    • Jin L, Hope KJ, Zhai Q, et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12:1167-1174. Novel therapeutic approach with a neutralizing monoclonal antibody directed against the adhesion molecule CD44. Acute myeloid leukaemic stem cells required interaction with a niche to maintain their stem cell properties, and the therapeutic approach was able to eliminate quiescent leukaemic stem cells from the circulation.
    • Jin L, Hope KJ, Zhai Q, et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12:1167-1174. Novel therapeutic approach with a neutralizing monoclonal antibody directed against the adhesion molecule CD44. Acute myeloid leukaemic stem cells required interaction with a niche to maintain their stem cell properties, and the therapeutic approach was able to eliminate quiescent leukaemic stem cells from the circulation.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.