-
1
-
-
0004152486
-
-
2nd ed, Royal Society of Chemistry: Cambridge
-
Franks, F. Water: A Matrix of Life, 2nd ed.; Royal Society of Chemistry: Cambridge, 2000.
-
(2000)
Water: A Matrix of Life
-
-
Franks, F.1
-
9
-
-
0039920133
-
Structure and Reactivity in Aqueous Solution
-
Cramer, C. J, Truhlar, D. G, Eds, American Chemical Society: Washington, DC
-
Cramer, C. J., Truhlar, D. G., Eds. Structure and Reactivity in Aqueous Solution; ACS Symposium Series 568; American Chemical Society: Washington, DC, 1994.
-
(1994)
ACS Symposium Series
, vol.568
-
-
-
12
-
-
0000677232
-
-
Li, C. J. Chem. Rev. 1993, 93, 2023-2035.
-
(1993)
Chem. Rev
, vol.93
, pp. 2023-2035
-
-
Li, C.J.1
-
16
-
-
0001300546
-
-
Breslow, R.; Maitra, U.; Rideout, D. Tetrahedron Lett. 1983, 24, 1901-1904.
-
(1983)
Tetrahedron Lett
, vol.24
, pp. 1901-1904
-
-
Breslow, R.1
Maitra, U.2
Rideout, D.3
-
18
-
-
0000619653
-
-
Grieco, P. A.; Garner, P.; He, Z. Tetrahedron Lett. 1983, 24, 1897-1900.
-
(1983)
Tetrahedron Lett
, vol.24
, pp. 1897-1900
-
-
Grieco, P.A.1
Garner, P.2
He, Z.3
-
19
-
-
33845551929
-
-
Grieco, P. A.; Yoshida, K.; Garner, P. J. Org. Chem. 1983, 48, 3137-3139.
-
(1983)
J. Org. Chem
, vol.48
, pp. 3137-3139
-
-
Grieco, P.A.1
Yoshida, K.2
Garner, P.3
-
21
-
-
33646934177
-
-
Otto, S.; Blokzijl, W.; Engberts, J. B. F. N. J. Org. Chem. 1994, 59, 5372-5376.
-
(1994)
J. Org. Chem
, vol.59
, pp. 5372-5376
-
-
Otto, S.1
Blokzijl, W.2
Engberts, J.B.F.N.3
-
27
-
-
0000886146
-
-
Blake, J. F.; Lim, D.; Jorgensen, W. L. J. Org. Chem. 1994, 59, 803-805.
-
(1994)
J. Org. Chem
, vol.59
, pp. 803-805
-
-
Blake, J.F.1
Lim, D.2
Jorgensen, W.L.3
-
28
-
-
4644277320
-
-
Butler, R. N.; Cunningham, W. J.; Coyne, A. G.; Burke, L. A. J. Am. Chem. Soc. 2004, 126, 11923-11929.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 11923-11929
-
-
Butler, R.N.1
Cunningham, W.J.2
Coyne, A.G.3
Burke, L.A.4
-
29
-
-
0001412107
-
-
Jorgensen, W. L.; Blake, J. F.; Lim, D. C.; Severance, D. L. J. Chem. Soc., Faraday Trans. 1994, 90, 1727-1732.
-
(1994)
J. Chem. Soc., Faraday Trans
, vol.90
, pp. 1727-1732
-
-
Jorgensen, W.L.1
Blake, J.F.2
Lim, D.C.3
Severance, D.L.4
-
30
-
-
0037158732
-
-
Chandrasekhar, J.; Shariffskul, S.; Jorgensen, W. L. J. Phys. Chem. B 2002, 106, 8078-8085.
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 8078-8085
-
-
Chandrasekhar, J.1
Shariffskul, S.2
Jorgensen, W.L.3
-
31
-
-
0025188104
-
-
Desimoni, G.; Faita, G.; Righetti, P. P.; Toma, L. Tetrahedron 1990, 46, 7951-7970.
-
(1990)
Tetrahedron
, vol.46
, pp. 7951-7970
-
-
Desimoni, G.1
Faita, G.2
Righetti, P.P.3
Toma, L.4
-
34
-
-
2642662490
-
-
Garcia, J. I.; Martinez-Merino, V.; Mayoral, J. A.; Salvatella, L. J. Am. Chem. Soc. 1998, 120, 2415-2420.
-
(1998)
J. Am. Chem. Soc
, vol.120
, pp. 2415-2420
-
-
Garcia, J.I.1
Martinez-Merino, V.2
Mayoral, J.A.3
Salvatella, L.4
-
35
-
-
20344388819
-
-
Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B. Angew. Chem., Int. Ed. 2005, 44, 3275-3279.
-
(2005)
Angew. Chem., Int. Ed
, vol.44
, pp. 3275-3279
-
-
Narayan, S.1
Muldoon, J.2
Finn, M.G.3
Fokin, V.V.4
Kolb, H.C.5
Sharpless, K.B.6
-
36
-
-
31444456557
-
-
Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takahe, K.; Tanaka, F.; Barbas, C. F. J. Am. Chem. Soc. 2006, 128, 734-735.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 734-735
-
-
Mase, N.1
Nakai, Y.2
Ohara, N.3
Yoda, H.4
Takahe, K.5
Tanaka, F.6
Barbas, C.F.7
-
37
-
-
33745504907
-
-
Gonzalez-Cruz, D.; Tejedor, D.; De Armas, P.; Morales, E. Q.; Garcia-Tellado, F. Chem. Commun. 2006, 2798-2800.
-
(2006)
Chem. Commun
, pp. 2798-2800
-
-
Gonzalez-Cruz, D.1
Tejedor, D.2
De Armas, P.3
Morales, E.Q.4
Garcia-Tellado, F.5
-
39
-
-
4243831461
-
-
Du, Q.; Superfine, R.; Freysz, E.; Shen, Y. R. Phys. Rev. Lett. 1993, 70, 2313-2316.
-
(1993)
Phys. Rev. Lett
, vol.70
, pp. 2313-2316
-
-
Du, Q.1
Superfine, R.2
Freysz, E.3
Shen, Y.R.4
-
40
-
-
0028766418
-
-
Du, Q.; Freysz, E.; Shen, Y. R. Science 1994, 264, 826-828.
-
(1994)
Science
, vol.264
, pp. 826-828
-
-
Du, Q.1
Freysz, E.2
Shen, Y.R.3
-
42
-
-
0031167218
-
-
Materer, N.; Starke, U.; Barbieri, A.; Vanhove, M. A.; Somorjai, G. A.; Kroes, G. J.; Minot, C. Surf. Sci. 1997, 381, 190-210.
-
(1997)
Surf. Sci
, vol.381
, pp. 190-210
-
-
Materer, N.1
Starke, U.2
Barbieri, A.3
Vanhove, M.A.4
Somorjai, G.A.5
Kroes, G.J.6
Minot, C.7
-
43
-
-
34247896136
-
-
Considering the liquidlike disordered film structure of the surface of ice, this prescribed density should be interpreted as a statistical estimate
-
Considering the liquidlike disordered film structure of the surface of ice, this prescribed density should be interpreted as a statistical estimate.
-
-
-
-
45
-
-
0035955005
-
-
Mantz, Y. A.; Geiger, F. M.; Molina, L. T.; Trout, B. L. J. Phys. Chem. A 2001, 105, 7037-7046.
-
(2001)
J. Phys. Chem. A
, vol.105
, pp. 7037-7046
-
-
Mantz, Y.A.1
Geiger, F.M.2
Molina, L.T.3
Trout, B.L.4
-
46
-
-
34247876620
-
-
We assume for the surface reaction that DMAD is always multiply H bonded to water since the free OH bonds are always available at the interface with almost zero cost. The stabilizing energy of DMAD at the water interface as a result of H bond formation with three water molecules is estimated to be -4.4 kcal/mol at B3LYP/6-31G*
-
We assume for the surface reaction that DMAD is always multiply H bonded to water since the free OH bonds are always available at the interface with almost zero cost. The stabilizing energy of DMAD at the water interface as a result of H bond formation with three water molecules is estimated to be -4.4 kcal/mol at B3LYP/6-31G*.
-
-
-
-
48
-
-
0000719732
-
-
Weiss, J.; Coupland, J. N.; Mcclements, D. J. J. Phys. Chem. 1996, 100, 1066-1071.
-
(1996)
J. Phys. Chem
, vol.100
, pp. 1066-1071
-
-
Weiss, J.1
Coupland, J.N.2
Mcclements, D.J.3
-
50
-
-
34247884939
-
-
If emulsifiers such as surfactants are used, smaller droplets can be obtained with a radius of ∼0.1 μm. Without emulsifiers, the size of n-alkane droplets, n = 6-16, is on the order of micrometers.
-
If emulsifiers such as surfactants are used, smaller droplets can be obtained with a radius of ∼0.1 μm. Without emulsifiers, the size of n-alkane droplets, n = 6-16, is on the order of micrometers.
-
-
-
-
52
-
-
36148995600
-
-
Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735-746.
-
(1985)
J. Chem. Phys
, vol.83
, pp. 735-746
-
-
Reed, A.E.1
Weinstock, R.B.2
Weinhold, F.3
-
53
-
-
34247888107
-
-
- using 6-311++G** at TS1.
-
- using 6-311++G** at TS1.
-
-
-
-
54
-
-
11744367106
-
-
Ferrario, M.; Haughney, M.; Mcdonald, I. R.; Klein, M. L. J. Chem. Phys. 1990, 93, 5156-5166.
-
(1990)
J. Chem. Phys
, vol.93
, pp. 5156-5166
-
-
Ferrario, M.1
Haughney, M.2
Mcdonald, I.R.3
Klein, M.L.4
-
55
-
-
36449000513
-
-
Guillot, B.; Guissani, Y.; Bratos, S. J. Chem. Phys. 1991, 95, 3643-3648.
-
(1991)
J. Chem. Phys
, vol.95
, pp. 3643-3648
-
-
Guillot, B.1
Guissani, Y.2
Bratos, S.3
-
56
-
-
0002127637
-
-
Dejong, P. H. K.; Wilson, J. E.; Neilson, G. W.; Buckingham, A. D. Mol. Phys. 1997, 91, 99-103.
-
(1997)
Mol. Phys
, vol.91
, pp. 99-103
-
-
Dejong, P.H.K.1
Wilson, J.E.2
Neilson, G.W.3
Buckingham, A.D.4
-
60
-
-
26944481188
-
-
Chandler, D. Nature 2005, 437, 640-647.
-
(2005)
Nature
, vol.437
, pp. 640-647
-
-
Chandler, D.1
-
61
-
-
36749111449
-
-
Curtiss, L. A.; Frurip, D. J.; Blander, M. J. Chem. Phys. 1979, 71, 2703-2711.
-
(1979)
J. Chem. Phys
, vol.71
, pp. 2703-2711
-
-
Curtiss, L.A.1
Frurip, D.J.2
Blander, M.3
-
62
-
-
34247888106
-
-
The H bond energy between water and DMAD was estimated using the optimized geometry of DMAD + three water molecules, denoted by 2w in Figure 3. The interaction energy of DMAD with each water molecule in 2w was then computed by removing the other two water molecules. This approach yielded DMAD-water interactions energies of 2-4 kcal/mol, variation depending on the local interacting groups, carbonyl oxygens or nitrogens.
-
The H bond energy between water and DMAD was estimated using the optimized geometry of DMAD + three water molecules, denoted by 2w in Figure 3. The interaction energy of DMAD with each water molecule in 2w was then computed by removing the other two water molecules. This approach yielded DMAD-water interactions energies of 2-4 kcal/mol, variation depending on the local interacting groups, carbonyl oxygens or nitrogens.
-
-
-
-
63
-
-
7444231098
-
-
Smith, J. D.; Cappa, C. D.; Wilson, K. R.; Messer, B. M.; Cohen, R. C.; Saykally, R. J. Science 2004, 306, 851-853.
-
(2004)
Science
, vol.306
, pp. 851-853
-
-
Smith, J.D.1
Cappa, C.D.2
Wilson, K.R.3
Messer, B.M.4
Cohen, R.C.5
Saykally, R.J.6
-
64
-
-
0035805184
-
-
Scatena, L. F.; Brown, M. G.; Richmond, G. L. Science 2001, 292, 908-912.
-
(2001)
Science
, vol.292
, pp. 908-912
-
-
Scatena, L.F.1
Brown, M.G.2
Richmond, G.L.3
-
65
-
-
34247894440
-
-
While the homogeneous reaction medium in the cited experiments was the mixture of methanol and water, it has been also shown that the local tetrahedral coordination of water is still roughly retained in a methanol/water mixture, as in pure water. See ref 65
-
While the homogeneous reaction medium in the cited experiments was the mixture of methanol and water, it has been also shown that the local tetrahedral coordination of water is still roughly retained in a methanol/water mixture, as in pure water. See ref 65.
-
-
-
-
67
-
-
34247896135
-
-
We assume for simplicity that water molecules, instead of methanol molecules, form H-bonds with DMAD preferably in a methanol/water mixture. For water, the other OH group of water that is not H-bonded to the reactant can still form H bonds with bulk water acting as an anchor, while for methanol, that anchoring is difficult because of the methyl end
-
We assume for simplicity that water molecules, instead of methanol molecules, form H-bonds with DMAD preferably in a methanol/water mixture. For water, the other OH group of water that is not H-bonded to the reactant can still form H bonds with bulk water acting as an anchor, while for methanol, that anchoring is difficult because of the methyl end.
-
-
-
-
68
-
-
34247899605
-
-
Since there might be more H-bonds involved in the homogeneous reaction than in the surface reaction, the energetic consequence might also be different. However, to a rough approximation, we assume that the relative H-bond stabilization of the TS compared to the reactants as a result of H-bond formation for the homogeneous reaction is roughly the same as that for the surface reaction, namely about 7 kcal/mol in favor of the TS
-
Since there might be more H-bonds involved in the homogeneous reaction than in the surface reaction, the energetic consequence might also be different. However, to a rough approximation, we assume that the relative H-bond stabilization of the TS compared to the reactants as a result of H-bond formation for the homogeneous reaction is roughly the same as that for the surface reaction, namely about 7 kcal/mol in favor of the TS.
-
-
-
-
69
-
-
0033549042
-
-
Jones, G. A.; Shephard, M. J.; Paddon-Row, M. N.; Beno, B. R.; Houk, K. N.; Redmond, K.; Carpenter, B. K. J. Am. Chem. Soc. 1999, 121, 4334-4339.
-
(1999)
J. Am. Chem. Soc
, vol.121
, pp. 4334-4339
-
-
Jones, G.A.1
Shephard, M.J.2
Paddon-Row, M.N.3
Beno, B.R.4
Houk, K.N.5
Redmond, K.6
Carpenter, B.K.7
-
70
-
-
33947088328
-
-
Tabushi, I.; Yamamura, K.; Yoshida, Z. J. Am. Chem. Soc. 1972, 94, 787-792.
-
(1972)
J. Am. Chem. Soc
, vol.94
, pp. 787-792
-
-
Tabushi, I.1
Yamamura, K.2
Yoshida, Z.3
-
71
-
-
0000641247
-
-
van der Wel, G. K.; Wijnen, J. W.; Engberts, J. B. F. N. J. Org. Chem. 1996, 61, 9001-9005.
-
(1996)
J. Org. Chem
, vol.61
, pp. 9001-9005
-
-
van der Wel, G.K.1
Wijnen, J.W.2
Engberts, J.B.F.N.3
-
72
-
-
34247892880
-
-
D = 1.2. These unpublished experimental data were kindly provided by Drs. Narayan and Sharpless from a private communication.
-
D = 1.2. These unpublished experimental data were kindly provided by Drs. Narayan and Sharpless from a private communication.
-
-
-
-
73
-
-
34247876619
-
-
2O are 0.912 and 1.121 mPa·s, respectively, at room temperature. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed.; Wiley: Weinheim, Germany, 2003.
-
2O are 0.912 and 1.121 mPa·s, respectively, at room temperature. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed.; Wiley: Weinheim, Germany, 2003.
-
-
-
-
74
-
-
34247849859
-
-
2O by the International Association for the Properties of Water and Steam (IAPWS) are 71.98 ± 0.36 and 71.87 ± 0.50. respectively (1997).
-
2O by the International Association for the Properties of Water and Steam (IAPWS) are 71.98 ± 0.36 and 71.87 ± 0.50. respectively (1997).
-
-
-
-
75
-
-
33144475097
-
-
Zhang, H. B.; Liu, L.; Chen, Y. J.; Wang, D.; Li, C. J. Eur. J. Org. Chem. 2006, 869-873.
-
(2006)
Eur. J. Org. Chem
, pp. 869-873
-
-
Zhang, H.B.1
Liu, L.2
Chen, Y.J.3
Wang, D.4
Li, C.J.5
-
77
-
-
0012610569
-
-
Rieber, N.; Alberts, J.; Lipsky, J. A.; Lemal, D. M. J. Am. Chem. Soc. 1969, 91, 5668-5669.
-
(1969)
J. Am. Chem. Soc
, vol.91
, pp. 5668-5669
-
-
Rieber, N.1
Alberts, J.2
Lipsky, J.A.3
Lemal, D.M.4
-
78
-
-
33751157732
-
-
Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623-11627.
-
(1994)
J. Phys. Chem
, vol.98
, pp. 11623-11627
-
-
Stephens, P.J.1
Devlin, F.J.2
Chabalowski, C.F.3
Frisch, M.J.4
-
79
-
-
0030018945
-
-
Goldstein, E.; Beno, B.; Houk, K. N. J. Am. Chem. Soc. 1996, 118, 6036-6043.
-
(1996)
J. Am. Chem. Soc
, vol.118
, pp. 6036-6043
-
-
Goldstein, E.1
Beno, B.2
Houk, K.N.3
-
80
-
-
0001157603
-
Transition states in organic chemistry: Ab initio
-
Schleyer, P. V. R, Ed, Wiley: Chichester
-
Wiest, O. Transition states in organic chemistry: Ab initio. In Encyclopedia of Computational Chemistry; Schleyer, P. V. R., Ed.; Wiley: Chichester, 1998; pp 3104-3114.
-
(1998)
Encyclopedia of Computational Chemistry
, pp. 3104-3114
-
-
Wiest, O.1
-
81
-
-
33748960439
-
-
Houk, K. N.; Li, Y.; Evanseck, J. D. Angew. Chem., Int Ed. Engl. 1992, 31, 682-708.
-
(1992)
Angew. Chem., Int Ed. Engl
, vol.31
, pp. 682-708
-
-
Houk, K.N.1
Li, Y.2
Evanseck, J.D.3
-
84
-
-
33746563448
-
-
Shao, Y.; Molnar, L. F.; Jung, Y.; et al. Phys. Chem. Chem. Phys. 2006, 8, 3172-3191.
-
(2006)
Phys. Chem. Chem. Phys
, vol.8
, pp. 3172-3191
-
-
Shao, Y.1
Molnar, L.F.2
Jung, Y.3
-
85
-
-
34247846794
-
-
For the neat reaction, we were unable to locate the concerted transition state that may be expected from the symmetry consideration as described in the main text, despite the extensive search for it. Stationary points located close to the concerted configuration turned out to be a second-order saddle point
-
For the neat reaction, we were unable to locate the concerted transition state that may be expected from the symmetry consideration as described in the main text, despite the extensive search for it. Stationary points located close to the concerted configuration turned out to be a second-order saddle point.
-
-
-
-
87
-
-
0033550518
-
-
Hrovat, D. A.; Duncan, J. A.; Borden, W. T. J. Am. Chem. Soc. 1999, 121, 169-175.
-
(1999)
J. Am. Chem. Soc
, vol.121
, pp. 169-175
-
-
Hrovat, D.A.1
Duncan, J.A.2
Borden, W.T.3
|