-
1
-
-
0031575290
-
-
Klein, D. L.; Roth, R.; Lim, A. K. L.; Alivisatos, A. P.; McEuen, P. L. Nature 1997, 389, 699-701.
-
(1997)
Nature
, vol.389
, pp. 699-701
-
-
Klein, D.L.1
Roth, R.2
Lim, A.K.L.3
Alivisatos, A.P.4
McEuen, P.L.5
-
3
-
-
2142658720
-
-
Fan, H. Y.; Yang, K.; Boye, D. M.; Sigmon, T.; Malloy, K. J.; Xu, H. F.; Lopez, G. P.; Brinker, C. J. Science 2004, 304, 567-571.
-
(2004)
Science
, vol.304
, pp. 567-571
-
-
Fan, H.Y.1
Yang, K.2
Boye, D.M.3
Sigmon, T.4
Malloy, K.J.5
Xu, H.F.6
Lopez, G.P.7
Brinker, C.J.8
-
4
-
-
0035834415
-
-
Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L. J.; Kim, K.-H.; Lieber, C. M. Science 2001, 294, 1313-1317.
-
(2001)
Science
, vol.294
, pp. 1313-1317
-
-
Huang, Y.1
Duan, X.2
Cui, Y.3
Lauhon, L.J.4
Kim, K.-H.5
Lieber, C.M.6
-
5
-
-
0035943358
-
-
Wang, J.; Gudiksen, M. S.; Duan, X.; Cui, Y.; Lieber, C. M. Science 2001, 295, 1455-1457.
-
(2001)
Science
, vol.295
, pp. 1455-1457
-
-
Wang, J.1
Gudiksen, M.S.2
Duan, X.3
Cui, Y.4
Lieber, C.M.5
-
6
-
-
0035804248
-
-
Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. Nature 2001, 409, 66-69.
-
(2001)
Nature
, vol.409
, pp. 66-69
-
-
Duan, X.1
Huang, Y.2
Cui, Y.3
Wang, J.4
Lieber, C.M.5
-
7
-
-
0037448573
-
-
Duan, X.; Huang, Y.; Agarwal, R.; Lieber, C. M. Nature 2003, 421, 241-245.
-
(2003)
Nature
, vol.421
, pp. 241-245
-
-
Duan, X.1
Huang, Y.2
Agarwal, R.3
Lieber, C.M.4
-
9
-
-
0035929124
-
-
Favier, F.; Walter, E. C.; Zach, M. P.; Benter, T.; Penner, R. M. Science 2001, 293, 2227-2231.
-
(2001)
Science
, vol.293
, pp. 2227-2231
-
-
Favier, F.1
Walter, E.C.2
Zach, M.P.3
Benter, T.4
Penner, R.M.5
-
10
-
-
27944463073
-
-
Chen, J.; Perebeinos, V.; Freitag, M.: Tsang, J.; Fu, Q.; Liu, J.; Avouris, P. Science 2005, 310, 1171-1174.
-
(2005)
Science
, vol.310
, pp. 1171-1174
-
-
Chen, J.1
Perebeinos, V.2
Freitag, M.3
Tsang, J.4
Fu, Q.5
Liu, J.6
Avouris, P.7
-
11
-
-
0037009625
-
-
Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris, P. Phys. Rev. Lett. 2002, 89, 106801.
-
(2002)
Phys. Rev. Lett
, vol.89
, pp. 106801
-
-
Heinze, S.1
Tersoff, J.2
Martel, R.3
Derycke, V.4
Appenzeller, J.5
Avouris, P.6
-
12
-
-
0032492884
-
-
Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Nature 1998, 393, 49-52.
-
(1998)
Nature
, vol.393
, pp. 49-52
-
-
Tans, S.J.1
Verschueren, A.R.M.2
Dekker, C.3
-
13
-
-
0035812821
-
-
Nicewarner-Pena, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Pena, D. J.; Walton, I. D.; Cromer, R.; Keating, C. D.; Natan, M. J. Science 2001, 294, 137-141.
-
(2001)
Science
, vol.294
, pp. 137-141
-
-
Nicewarner-Pena, S.R.1
Freeman, R.G.2
Reiss, B.D.3
He, L.4
Pena, D.J.5
Walton, I.D.6
Cromer, R.7
Keating, C.D.8
Natan, M.J.9
-
14
-
-
0037154825
-
-
Park, S.-J.; Taton, T. A.; Mirkin, C. A. Science 2002, 295, 1503-1506.
-
(2002)
Science
, vol.295
, pp. 1503-1506
-
-
Park, S.-J.1
Taton, T.A.2
Mirkin, C.A.3
-
15
-
-
0035902938
-
-
Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Science 2001, 293, 1289-1292.
-
(2001)
Science
, vol.293
, pp. 1289-1292
-
-
Cui, Y.1
Wei, Q.2
Park, H.3
Lieber, C.M.4
-
17
-
-
0034824859
-
-
Huang, Y.; Duan, X.; Wei, Q.; Lieber, C. M. Science 2001, 291, 630-633.
-
(2001)
Science
, vol.291
, pp. 630-633
-
-
Huang, Y.1
Duan, X.2
Wei, Q.3
Lieber, C.M.4
-
19
-
-
0000064757
-
-
Smith, P. A.; Nordquist, C. D.; Jackson, T. N.; Mayer, T. S.; Martin. B. R.; Mbindyo, J.; Mallouk, T. E. Appl. Phys. Lett. 2000, 77, 1399-1401.
-
(2000)
Appl. Phys. Lett
, vol.77
, pp. 1399-1401
-
-
Smith, P.A.1
Nordquist, C.D.2
Jackson, T.N.3
Mayer, T.S.4
Martin, B.R.5
Mbindyo, J.6
Mallouk, T.E.7
-
20
-
-
18044400616
-
-
Zhang, Y.; Chang, A.; Cao, J.; Wang, Q.; Kim, W.; Li, Y.; Morris. N.; Yenilmez, E.; Kong, J.: Dai, H. Appl. Phys. Lett. 2001, 79, 3155-3157.
-
(2001)
Appl. Phys. Lett
, vol.79
, pp. 3155-3157
-
-
Zhang, Y.1
Chang, A.2
Cao, J.3
Wang, Q.4
Kim, W.5
Li, Y.6
Morris, N.7
Yenilmez, E.8
Kong, J.9
Dai, H.10
-
21
-
-
0001213159
-
-
Tanase, M.; Bauer, L. A.; Hultgren, A.; Silevitch, D. M.; Sun, L.; Reich, D. H.; Searson, P. C.; Meyer, G. J. Nano Lett. 2001, 1, 155-158.
-
(2001)
Nano Lett
, vol.1
, pp. 155-158
-
-
Tanase, M.1
Bauer, L.A.2
Hultgren, A.3
Silevitch, D.M.4
Sun, L.5
Reich, D.H.6
Searson, P.C.7
Meyer, G.J.8
-
22
-
-
33144462900
-
-
Wang, Y. H.; Maspoch, D.; Zou, S. L.; Schatz, G. C.; Smalley, R. E.; Mirkin, C. A. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 2026-2031.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A
, vol.103
, pp. 2026-2031
-
-
Wang, Y.H.1
Maspoch, D.2
Zou, S.L.3
Schatz, G.C.4
Smalley, R.E.5
Mirkin, C.A.6
-
23
-
-
0041822001
-
-
Rao, S. G.; Huang, L.; Setyawan, W.; Hong, S. H. Nature 2003, 425, 36-37.
-
(2003)
Nature
, vol.425
, pp. 36-37
-
-
Rao, S.G.1
Huang, L.2
Setyawan, W.3
Hong, S.H.4
-
24
-
-
25844439397
-
-
Hannon, J. B.; Afzali, A.; Klinke, C.; Avouris, P. Langmuir 2005, 21, 8569-8571.
-
(2005)
Langmuir
, vol.21
, pp. 8569-8571
-
-
Hannon, J.B.1
Afzali, A.2
Klinke, C.3
Avouris, P.4
-
25
-
-
33745473057
-
-
Myung, S.; Im, J.; Huang, L.; Rao, S. G.; Kim, T.; Lee, D. J.; Hong, S. H. J. Phys. Chem. B 2006, 110, 10217-10219.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 10217-10219
-
-
Myung, S.1
Im, J.2
Huang, L.3
Rao, S.G.4
Kim, T.5
Lee, D.J.6
Hong, S.H.7
-
26
-
-
33646123071
-
-
Kumagai, S.; Yoshii, S.; Yamada, K.; Matsukawa, N.; Fujiwara, I.; Iwahori, K.; Yamashita, I. Appl. Phys. Lett. 2006, 88, 153103.
-
(2006)
Appl. Phys. Lett
, vol.88
, pp. 153103
-
-
Kumagai, S.1
Yoshii, S.2
Yamada, K.3
Matsukawa, N.4
Fujiwara, I.5
Iwahori, K.6
Yamashita, I.7
-
27
-
-
3042830832
-
-
Cui, Y.; Bjork, M. T.; Liddle, J. A.; Sonnichsen, C.; Boussert, B.; Alivisatos, A. P. Nano Lett. 2004, 4, 1093-1098.
-
(2004)
Nano Lett
, vol.4
, pp. 1093-1098
-
-
Cui, Y.1
Bjork, M.T.2
Liddle, J.A.3
Sonnichsen, C.4
Boussert, B.5
Alivisatos, A.P.6
-
28
-
-
0346394257
-
-
Xia, Y. N.; Yin, Y. D.; Lu, Y.; McLellan, J. Adv. Funct. Mater. 2003, 13, 907-918.
-
(2003)
Adv. Funct. Mater
, vol.13
, pp. 907-918
-
-
Xia, Y.N.1
Yin, Y.D.2
Lu, Y.3
McLellan, J.4
-
30
-
-
33746919945
-
-
Zheng, J. W.; Constantinou, P. E.; Micheel, C.; Alivisatos, A. P.; Kiehl, R. A.; Seeman, N. C. Nano Lett. 2006, 6, 1502-1504.
-
(2006)
Nano Lett
, vol.6
, pp. 1502-1504
-
-
Zheng, J.W.1
Constantinou, P.E.2
Micheel, C.3
Alivisatos, A.P.4
Kiehl, R.A.5
Seeman, N.C.6
-
32
-
-
0032546024
-
-
Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. Nature 1998, 391, 775-778.
-
(1998)
Nature
, vol.391
, pp. 775-778
-
-
Braun, E.1
Eichen, Y.2
Sivan, U.3
Ben-Yoseph, G.4
-
33
-
-
0038072777
-
-
Fu, X. Y.; Wang, Y.; Huang, L. X.; Sha, Y. L.; Gui, L. L.; Lai, L. H.; Tang, Y. Q. Adv. Mater. 2003, 15, 902-906.
-
(2003)
Adv. Mater
, vol.15
, pp. 902-906
-
-
Fu, X.Y.1
Wang, Y.2
Huang, L.X.3
Sha, Y.L.4
Gui, L.L.5
Lai, L.H.6
Tang, Y.Q.7
-
34
-
-
0141739727
-
-
Dujardin, E.; Peet, C.; Stubbs, G.; Culver, J. N.; Mann, S. Nano Lett. 2003, 3, 413-417.
-
(2003)
Nano Lett
, vol.3
, pp. 413-417
-
-
Dujardin, E.1
Peet, C.2
Stubbs, G.3
Culver, J.N.4
Mann, S.5
-
35
-
-
0242382678
-
-
Nakao, H.; Shiigi, H.; Yamamoto, Y.; Tokonami, S.; Nagaoka, T.; Sugiyama, S.; Ohtani, T. Nano Lett. 2003, 3, 1391-1394.
-
(2003)
Nano Lett
, vol.3
, pp. 1391-1394
-
-
Nakao, H.1
Shiigi, H.2
Yamamoto, Y.3
Tokonami, S.4
Nagaoka, T.5
Sugiyama, S.6
Ohtani, T.7
-
36
-
-
0037036108
-
-
Demers, L. M.; Ginger, D. S.; Park, S. J.; Li, Z.; Chung, S. W.; Mirkin, C. A. Science 2002, 296, 1836-1838.
-
(2002)
Science
, vol.296
, pp. 1836-1838
-
-
Demers, L.M.1
Ginger, D.S.2
Park, S.J.3
Li, Z.4
Chung, S.W.5
Mirkin, C.A.6
-
37
-
-
33847693439
-
-
The electrical double layer is formed due to rearrangement (screening) of ions that are present in the liquid medium. Its electrostatic potentials and charge densities are described by the Poisson-Boltzmann equation. When the nanoparticles come very close to the substrate, the van der Waals interaction also contributes to the interaction energy. More details can be found in the later part of this paper. See also refs 38-39.
-
The electrical double layer is formed due to rearrangement (screening) of ions that are present in the liquid medium. Its electrostatic potentials and charge densities are described by the Poisson-Boltzmann equation. When the nanoparticles come very close to the substrate, the van der Waals interaction also contributes to the interaction energy. More details can be found in the later part of this paper. See also refs 38-39.
-
-
-
-
40
-
-
33847731721
-
-
Wolf, S. Silicon Processing for the VLSI Era, 4: Deep-Submicron Process Technology; Lattice Press: Sunset Beach, 2002.
-
Wolf, S. Silicon Processing for the VLSI Era, Vol. 4: Deep-Submicron Process Technology; Lattice Press: Sunset Beach, 2002.
-
-
-
-
41
-
-
33847763126
-
-
4OH, and water). Electroless plating condition: 65 °C for 45 s.
-
4OH, and water). Electroless plating condition: 65 °C for 45 s.
-
-
-
-
42
-
-
26844451426
-
-
Onclin, S.; Ravoo, B. J.; Reinhoudt, D. N. Angew. Chem., Int. Ed. 2005, 44, 6282-6304.
-
(2005)
Angew. Chem., Int. Ed
, vol.44
, pp. 6282-6304
-
-
Onclin, S.1
Ravoo, B.J.2
Reinhoudt, D.N.3
-
43
-
-
2442600280
-
-
Smith, R. K.; Lewis, P. A.; Weiss, P. S. Prog. Surf. Sci. 2004, 75, 1-68.
-
(2004)
Prog. Surf. Sci
, vol.75
, pp. 1-68
-
-
Smith, R.K.1
Lewis, P.A.2
Weiss, P.S.3
-
44
-
-
33847728545
-
-
The citrate ions in the gold colloid are strongly adsorbed on the gold nanoparticle surface and are deprotonated at the pH level of our experiment, resulting in negatively charged nanoparticles. See also ref 55.
-
The citrate ions in the gold colloid are strongly adsorbed on the gold nanoparticle surface and are deprotonated at the pH level of our experiment, resulting in negatively charged nanoparticles. See also ref 55.
-
-
-
-
45
-
-
33847712846
-
-
The aqueous gold colloidal solution contains Na, citrate ions (C6O7H7, C6O 7H62, C6O7H 53, Cl, H3O, and OH, see, for example, ref 55, Their concentrations are from the measured pH of 6.6, known dissociation constants of citrate ions, and private communication with Ted Pella Inc, Na, 7.8 × 10 -6 M, C6O7H7, 1.5 × 10-8 M, C6O7H6 2, 1.0 × 10-6 M, C6O 7H53, 1.6 × 10-6 M, Cl, 1.2 × 10-6 M, H3O, 2.5 × 10-7 M, OH, 4.0 × 10-8 M
-
-8 M.
-
-
-
-
47
-
-
33847734615
-
-
First, both MHA and APTES functionalized surfaces are hydrophilic, so that when the sample is removed from the aqueous solution of gold colloid, the sample is completely covered with a film of water and produces no water-air interface near the surface patterns. Second, while the sample is entirely covered with the water film, it is immediately immersed into a large of pure methanol to rinse unattached nanoparticles from the substrate. When the sample is finally removed from the methanol for drying with nitrogen, no unattached nanoparticles are present to contribute to capillary force driven assembly. Also, if the capillary force were instrumental in the observed nanoparticle placement, the amount of immersion time in the Au colloidal solution would be irrelevant. However, if the immersion time is reduced to a few minutes <∼4 min, with everything else kept exactly the same, we find almost no attachment of Au nanoparticles on the substrate. This serves as another direct e
-
First, both MHA and APTES functionalized surfaces are hydrophilic, so that when the sample is removed from the aqueous solution of gold colloid, the sample is completely covered with a film of water and produces no water-air interface near the surface patterns. Second, while the sample is entirely covered with the water film, it is immediately immersed into a large volume of pure methanol to rinse unattached nanoparticles from the substrate. When the sample is finally removed from the methanol for drying with nitrogen, no unattached nanoparticles are present to contribute to capillary force driven assembly. Also, if the capillary force were instrumental in the observed nanoparticle placement, the amount of immersion time in the Au colloidal solution would be irrelevant. However, if the immersion time is reduced to a few minutes (<∼4 min), with everything else kept exactly the same, we find almost no attachment of Au nanoparticles on the substrate. This serves as another direct evidence that capillary forces are not responsible for the observed nanoparticle placement.
-
-
-
-
48
-
-
33847711703
-
-
The SAMs of ODT were formed by immersing into 5 mM ODT solution in hexadecane for 42 h at 40 °C, followed by rinsing with warm (40 °C) acetone and drying with nitrogen.
-
The SAMs of ODT were formed by immersing into 5 mM ODT solution in hexadecane for 42 h at 40 °C, followed by rinsing with warm (40 °C) acetone and drying with nitrogen.
-
-
-
-
49
-
-
0001713789
-
-
Bell, G. M.; Levine, S.; McCartney, L. N. J. Colloid Interface Sci. 1970, 33, 335-359.
-
(1970)
J. Colloid Interface Sci
, vol.33
, pp. 335-359
-
-
Bell, G.M.1
Levine, S.2
McCartney, L.N.3
-
55
-
-
0028765757
-
-
Biggs, S.; Mulvaney, P.; Zukoski, C. F.; Grieser, F. J. Am. Chem. Soc. 1994, 116, 9150-9157.
-
(1994)
J. Am. Chem. Soc
, vol.116
, pp. 9150-9157
-
-
Biggs, S.1
Mulvaney, P.2
Zukoski, C.F.3
Grieser, F.4
-
57
-
-
33847715772
-
-
The value of the Hamaker constant is dominated by substrate materials and medium, and the effect of SAMs on Hamaker constant is negligible as long as the separation is larger than ∼5 nm. See, for example, ref 58.
-
The value of the Hamaker constant is dominated by substrate materials and medium, and the effect of SAMs on Hamaker constant is negligible as long as the separation is larger than ∼5 nm. See, for example, ref 58.
-
-
-
-
58
-
-
0002844958
-
-
Israelachvili, J. N.; Tabor, D. Proc. R. Soc. London, Ser. A 1972, 331, 19-38.
-
(1972)
Proc. R. Soc. London, Ser. A
, vol.331
, pp. 19-38
-
-
Israelachvili, J.N.1
Tabor, D.2
-
60
-
-
0037452814
-
-
Barten, D.; Kleijn, J. M.; Duval, J.; von Leeuwen, H. P.; Lyklema, J.; Stuart, M. A. C. Langmuir 2003, 19, 1133-1139.
-
(2003)
Langmuir
, vol.19
, pp. 1133-1139
-
-
Barten, D.1
Kleijn, J.M.2
Duval, J.3
von Leeuwen, H.P.4
Lyklema, J.5
Stuart, M.A.C.6
-
61
-
-
33847705606
-
-
Because λ(h) decreases as h increases, this value is a low-bound estimate
-
Because λ(h) decreases as h increases, this value is a low-bound estimate.
-
-
-
-
62
-
-
33847693834
-
-
10 (particles/mL), the immersion times were 30, 20, and 10 min, and the immersion temperatures were room temperature, 4 °C, and 4 °C for 200, 80, and 50 nm Au nanoparticles, for parts B, C, and D of Figure 7, respectively. All Au nanoparticles from Ted Pella Inc.
-
10 (particles/mL), the immersion times were 30, 20, and 10 min, and the immersion temperatures were room temperature, 4 °C, and 4 °C for 200, 80, and 50 nm Au nanoparticles, for parts B, C, and D of Figure 7, respectively. All Au nanoparticles from Ted Pella Inc.
-
-
-
-
64
-
-
0003423226
-
-
Grabert, H, Devoret, M. H, Eds, Plenum: New York
-
Grabert, H.; Devoret, M. H., Eds. Single Charge Tunneling; Plenum: New York, 1992.
-
(1992)
Single Charge Tunneling
-
-
-
65
-
-
33847742472
-
-
Note, on the other hand, that with current lateral pattern definition techniques such as photolithography, it is difficult to define patterns with resolution better than a few tens of nanometers. Other techniques such as e-beam writing and scanning probe microscopy are too slow for large-scale applications
-
Note, on the other hand, that with current lateral pattern definition techniques such as photolithography, it is difficult to define patterns with resolution better than a few tens of nanometers. Other techniques such as e-beam writing and scanning probe microscopy are too slow for large-scale applications.
-
-
-
-
66
-
-
33847744927
-
-
Here, wafer-scale refers to the simultaneous fabrication of millions of devices on a single wafer
-
Here, "wafer-scale" refers to the simultaneous fabrication of millions of devices on a single wafer.
-
-
-
|