메뉴 건너뛰기




Volumn 59, Issue 2, 2007, Pages 349-366

Dynamic detection of change points in long time series

Author keywords

Change point models; GARCH models; Markov chain Monte Carlo; Particle filter; Sequential Monte Carlo; State state models

Indexed keywords

BAYESIAN NETWORKS; MARKOV PROCESSES; MATHEMATICAL MODELS; PROBLEM SOLVING; SEQUENTIAL MACHINES; STATE SPACE METHODS;

EID: 33847358600     PISSN: 00203157     EISSN: 15729052     Source Type: Journal    
DOI: 10.1007/s10463-006-0053-9     Document Type: Article
Times cited : (54)

References (29)
  • 2
    • 0000193853 scopus 로고
    • On Gibbs sampling for state space models
    • Carter, C. K., Kohn, R. (1994). On Gibbs sampling for state space models. Biometrika, 81(3), 541-553.
    • (1994) Biometrika , vol.81 , Issue.3 , pp. 541-553
    • Carter, C.K.1    Kohn, R.2
  • 3
    • 0002205556 scopus 로고    scopus 로고
    • Rao-Blackwellisation of sampling schemes
    • Casella, G., Robert, C. (1996). Rao-Blackwellisation of sampling schemes. Biometrika, 1, 81-94.
    • (1996) Biometrika , vol.1 , pp. 81-94
    • Casella, G.1    Robert, C.2
  • 5
    • 0003122168 scopus 로고    scopus 로고
    • Estimation and comparison of multiple change-point models
    • Chib, S. (1998). Estimation and comparison of multiple change-point models. Journal of Econometrics, 86, 221-241.
    • (1998) Journal of Econometrics , vol.86 , pp. 221-241
    • Chib, S.1
  • 6
    • 0012338718 scopus 로고    scopus 로고
    • A sequential particle filter for static models
    • Chopin, N. (2002). A sequential particle filter for static models. Biometrika, 89, 539-552.
    • (2002) Biometrika , vol.89 , pp. 539-552
    • Chopin, N.1
  • 7
    • 21644457738 scopus 로고    scopus 로고
    • Central Limit Theorem for sequential Monte Carlo methods and its application to Bayesian inference
    • Chopin, N. (2004). Central Limit Theorem for sequential Monte Carlo methods and its application to Bayesian inference. Annals of Statistics, 32(6), 2385-2411.
    • (2004) Annals of Statistics , vol.32 , Issue.6 , pp. 2385-2411
    • Chopin, N.1
  • 8
    • 4644268492 scopus 로고    scopus 로고
    • Bayesian inference and state number determination for hidden Markov models: An application to the information content of the yield curve about inflation
    • Chopin, N., Pelgrin, F. (2004). Bayesian inference and state number determination for hidden Markov models: an application to the information content of the yield curve about inflation. Journal of Econometrics, 123(2), 327-344.
    • (2004) Journal of Econometrics , vol.123 , Issue.2 , pp. 327-344
    • Chopin, N.1    Pelgrin, F.2
  • 9
    • 0001325243 scopus 로고
    • The simulation smoother for time series models
    • de Jong, P.. Shephard, N. (1995). The simulation smoother for time series models. Biometrika, 82, 339-350.
    • (1995) Biometrika , vol.82 , pp. 339-350
    • de Jong, P.1    Shephard, N.2
  • 10
    • 0002936641 scopus 로고    scopus 로고
    • Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering
    • J. Azéma, M. Emery, M. Ledoux, M. Yor, Eds, Séminaire de Probabilités XXXIV, Berlin Heidelberg New York: Springer
    • Del Moral, P., Miclo, L. (2000). Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering. In J. Azéma, M. Emery, M. Ledoux, M. Yor, (Eds.) Séminaire de Probabilités XXXIV, (vol 1729 pp 1-145). Lecture Notes in Mathematics, Berlin Heidelberg New York: Springer.
    • (2000) Lecture Notes in Mathematics , vol.1729 , pp. 1-145
    • Del Moral, P.1    Miclo, L.2
  • 12
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • Doucet, A., Godsill, S., Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10(3), 197-208.
    • (2000) Statistics and Computing , vol.10 , Issue.3 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 15
    • 0035648076 scopus 로고    scopus 로고
    • Following a moving target - Monte Carlo inference for dynamic Bayesian models
    • Gilks, W. R. and Berzuini, C. (2001). Following a moving target - Monte Carlo inference for dynamic Bayesian models. Journal of the Royal Statistical Society Series B, 63, 127-146.
    • (2001) Journal of the Royal Statistical Society Series B , vol.63 , pp. 127-146
    • Gilks, W.R.1    Berzuini, C.2
  • 18
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 20
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5, 1-25.
    • (1996) Journal of Computational and Graphical Statistics , vol.5 , pp. 1-25
    • Kitagawa, G.1
  • 21
    • 0001387339 scopus 로고    scopus 로고
    • State space and hidden Markov models
    • O. E. Barndorff-Nielsen, D. R. Cox, C. Klüppelberg Eds, London: Chapman and Hall
    • Künsch, H. (2001). State space and hidden Markov models. In O. E. Barndorff-Nielsen, D. R. Cox, C. Klüppelberg (Eds.) Complex stochastic systems, (pp 109-173). London: Chapman and Hall.
    • (2001) Complex stochastic systems , pp. 109-173
    • Künsch, H.1
  • 23
    • 79953111112 scopus 로고
    • Bayesian inference and prediction for mean and variance shifts in autoregressive time series
    • McCulloch, R., Tsay, R. (1993). Bayesian inference and prediction for mean and variance shifts in autoregressive time series. Journal of the American Statistical Association, 88, 968-978.
    • (1993) Journal of the American Statistical Association , vol.88 , pp. 968-978
    • McCulloch, R.1    Tsay, R.2
  • 24
    • 33645269814 scopus 로고    scopus 로고
    • Long range dependence effects and ARCH modelling
    • P. Doukhan, G. Oppenheim, M. Taqqu Eds, Boston: Birkhauser
    • Mikosch, T., Stǎricǎ, C. (2003). Long range dependence effects and ARCH modelling. In P. Doukhan, G. Oppenheim, M. Taqqu (Eds.) Theory and applications of long range dependence. Boston: Birkhauser.
    • (2003) Theory and applications of long range dependence
    • Mikosch, T.1    Stǎricǎ, C.2
  • 25
    • 12144287086 scopus 로고    scopus 로고
    • Non-stationarities in financial time series, the long range dependence and the IGARCH effects
    • Mikosch, T., Stǎricǎ, C. (2004). Non-stationarities in financial time series, the long range dependence and the IGARCH effects. Review of Economics and Statistics, 86, 378-390.
    • (2004) Review of Economics and Statistics , vol.86 , pp. 378-390
    • Mikosch, T.1    Stǎricǎ, C.2
  • 28
    • 0031285157 scopus 로고    scopus 로고
    • Weak convergence and optimal scaling of random walk Metropolis algorithms
    • Roberts, G., Gelman, A., Gilks, W. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Annals of Applied probability 7, 110-120.
    • (1997) Annals of Applied probability , vol.7 , pp. 110-120
    • Roberts, G.1    Gelman, A.2    Gilks, W.3
  • 29
    • 21344490449 scopus 로고
    • Bayesian retrospective multiple-changepoint identification
    • Stephens, D. A. (1994). Bayesian retrospective multiple-changepoint identification. Applied Statistics, 43(1), 159-178.
    • (1994) Applied Statistics , vol.43 , Issue.1 , pp. 159-178
    • Stephens, D.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.