메뉴 건너뛰기




Volumn 22, Issue 1-3, 1998, Pages 69-80

Learned parametric mixture based ica algorithm

Author keywords

Blind separation; Independent component analysis; Information theoretic; Learning; Maximum likelihood; Nonlinearity; Parametric density mixture

Indexed keywords

ADAPTIVE ALGORITHMS; CONTROL NONLINEARITIES; HEURISTIC METHODS; INFORMATION THEORY; LEARNING ALGORITHMS; MATHEMATICAL MODELS; MAXIMUM LIKELIHOOD ESTIMATION; SPURIOUS SIGNAL NOISE; STATISTICAL METHODS;

EID: 0345019851     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0925-2312(98)00050-2     Document Type: Article
Times cited : (60)

References (24)
  • 1
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind separation of sources
    • in: D.S. Touretzky, M.C. Mozer, M.E. Hasselmo (Eds.) MIT Press, Cambridge, MA
    • S.-I. Amari, A. Cichocki, H. Yang, A new learning algorithm for blind separation of sources, in: D.S. Touretzky, M.C. Mozer, M.E. Hasselmo (Eds.), Advances in Neural Information Processing, 8, MIT Press, Cambridge, MA, 1996, pp. 757-763.
    • (1996) Advances in Neural Information Processing , vol.8 , pp. 757-763
    • Amari, S.-I.1    Cichocki, A.2    Yang, H.3
  • 2
    • 0029411030 scopus 로고
    • An information-maximatization approach to blind separation and blind deconvolution
    • Bell A.J., Sejnowski T.J. An information-maximatization approach to blind separation and blind deconvolution. Neural Comput. 7:1995;1129-1159.
    • (1995) Neural Comput. , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 3
    • 0031122399 scopus 로고    scopus 로고
    • Informax and maximum likelihood for blind source separation
    • J.F. Cardoso, Informax and maximum likelihood for blind source separation, IEEE Signal Process. Lett. 4, 109-111.
    • IEEE Signal Process. Lett. , vol.4 , pp. 109-111
    • Cardoso, J.F.1
  • 5
    • 0344592250 scopus 로고    scopus 로고
    • Master Thesis, Department of Computer Science and Engineering, The Chinese University of Hong Kong, June
    • C.C. Cheung, Adaptive blind signal separation, Master Thesis, Department of Computer Science and Engineering, The Chinese University of Hong Kong, June 1997.
    • (1997) Adaptive Blind Signal Separation
    • Cheung, C.C.1
  • 6
    • 0030707022 scopus 로고    scopus 로고
    • Separation of two independent sources by the information-theoretic approach with cubic nonlinearity
    • 9-12 June Houston, TX, USA
    • C.C. Cheung, L. Xu, Separation of two independent sources by the information-theoretic approach with cubic nonlinearity, Proc. IEEE Int. Conf. on Neural Networks (IEEE-INNS IJCNN97), 9-12 June 1997, Houston, TX, USA, vol. 4, pp. 2239-2244.
    • (1997) Proc. IEEE Int. Conf. on Neural Networks (IEEE-INNS IJCNN97) , vol.4 , pp. 2239-2244
    • Cheung, C.C.1    Xu, L.2
  • 7
    • 0344678631 scopus 로고    scopus 로고
    • Independent component analysis for noisy data
    • in: C. Fyfe (Ed.) 9-10 February, Tenerife, Spain, ICSC Academic Press
    • Cichocki et al., Independent component analysis for noisy data in: C. Fyfe (Ed.), Proc. Int. ICSC Workshop on Independence and Artificial neural networks (I&ANN'98), 9-10 February, Tenerife, Spain, ICSC Academic Press, 1998, pp. 52-58.
    • (1998) Proc. Int. ICSC Workshop on Independence and Artificial Neural Networks (I&ANN'98) , pp. 52-58
    • Cichocki1
  • 8
    • 0028416938 scopus 로고
    • Independent component analysis - A new concept?
    • P. Comon, Independent component analysis - a new concept? Signal Process. 36 (1994) 287-314.
    • (1994) Signal Process. , vol.36 , pp. 287-314
    • Comon, P.1
  • 10
    • 0344247204 scopus 로고
    • Adaptive contrast enhancement by entropy maximization with a 1-K-1 constrained network
    • 30 October-3 November Beijing
    • I. King, L. Xu, Adaptive contrast enhancement by entropy maximization with a 1-K-1 constrained network, Proc. 1995 Int. Conf. on Neural Information Process. (ICONIP95), 30 October-3 November 1995, Beijing, vol. II, pp. 703-706.
    • (1995) Proc. 1995 Int. Conf. on Neural Information Process. (ICONIP95) , vol.2 , pp. 703-706
    • King, I.1    Xu, L.2
  • 11
    • 0000772267 scopus 로고
    • Nonlinear neurons in the low-noise limit: A factorial code maximizes information transfer
    • Nadal J.-P., Parga N. Nonlinear neurons in the low-noise limit. a factorial code maximizes information transfer Network. 5:1994;565-581.
    • (1994) Network , vol.5 , pp. 565-581
    • Nadal, J.-P.1    Parga, N.2
  • 12
    • 0344678630 scopus 로고    scopus 로고
    • ICA Learning rules: Stationarity, stability, and sigmoids
    • in: C. Fyfe (Ed.) 9-10 Febraury, Tenerife, Spain, ICSC Academic Press, New York
    • E. Oja, ICA Learning rules: stationarity, stability, and sigmoids, in: C. Fyfe (Ed.), Proc. of Int. ICSC Workshop on Independence and Artificial Neural Networks (I&ANN'98), 9-10 Febraury, Tenerife, Spain, ICSC Academic Press, New York, 1998, pp. 97-103.
    • (1998) Proc. of Int. ICSC Workshop on Independence and Artificial Neural Networks (I&ANN'98) , pp. 97-103
    • Oja, E.1
  • 13
  • 15
    • 0002049291 scopus 로고
    • Separation of a mixture of independent sources through a maximum likelihood approach
    • J. et al. Vandewalle. Amsterdam: Elsevier
    • Pham D.T., Garat P., Jutten C. Separation of a mixture of independent sources through a maximum likelihood approach. Vandewalle J.et al. Singal Processing VI. Theories and Applications:1992;771-774 Elsevier, Amsterdam.
    • (1992) Singal Processing VI: Theories and Applications , pp. 771-774
    • Pham, D.T.1    Garat, P.2    Jutten, C.3
  • 16
    • 0006005149 scopus 로고    scopus 로고
    • Bayesian Ying-Yang System and Theory as A Unified Statistical Learning Approach: (I) Unsupervised and Semi-Unsupervised Learning, Invited paper
    • S. Amari, & N. Kassabov. Berlin: Springer
    • Xu L. Bayesian Ying-Yang System and Theory as A Unified Statistical Learning Approach: (I) Unsupervised and Semi-Unsupervised Learning, Invited paper. Amari S., Kassabov N. Brain-like Computing and Intelligent Information Systems. 1997;241-274 Springer, Berlin.
    • (1997) Brain-like Computing and Intelligent Information Systems , pp. 241-274
    • Xu, L.1
  • 17
    • 0038259620 scopus 로고    scopus 로고
    • Bayesian Ying-Yang system and theory as a unified statistical learning approach (II): From unsupervised learning to supervised learning and temporal modeling and (III): Models and algorithms for dependence reduction, data dimension reduction, ICA and supervised learning
    • in: K.W. Wong, I. King, D.Y. Yeung (Eds.) Springer, Berlin
    • L. Xu, Bayesian Ying-Yang system and theory as a unified statistical learning approach (II): from unsupervised learning to supervised learning and temporal modeling and (III): models and algorithms for dependence reduction, data dimension reduction, ICA and supervised learning, in: K.W. Wong, I. King, D.Y. Yeung (Eds.), Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective (TANC97), Springer, Berlin, 1997, pp. 25-60.
    • (1997) Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective (TANC97) , pp. 25-60
    • Xu, L.1
  • 19
    • 0031632920 scopus 로고    scopus 로고
    • BYY dependence reduction theory and blind source separation
    • 5-9 May Anchorage, Alaska
    • L. Xu, BYY dependence reduction theory and blind source separation, Proc. Intentional Joint Conf. on Neural Networks, 5-9 May 1998, Anchorage, Alaska, Vol. II, pp. 2495-2500.
    • (1998) Proc. Intentional Joint Conf. on Neural Networks , vol.2 , pp. 2495-2500
    • Xu, L.1
  • 22
    • 0030706830 scopus 로고    scopus 로고
    • Independent component analysis by the information-theoretic approach with mixture of density
    • 9-12 June, Houston, TX, USA
    • L. Xu, C.C. Cheung, H.H. Yang, S.-I. Amari, Independent component analysis by the information-theoretic approach with mixture of density, Proc. IEEE Int. Conf. on Neural Networks (IEEE-INNS IJCNN97), 9-12 June, Houston, TX, USA, 1997, pp. 1821-1826.
    • (1997) Proc. IEEE Int. Conf. on Neural Networks (IEEE-INNS IJCNN97) , pp. 1821-1826
    • Xu, L.1    Cheung, C.C.2    Yang, H.H.3    Amari, S.-I.4
  • 23
    • 0345109528 scopus 로고    scopus 로고
    • Signal source separation by mixtures accumulative distribution functions or mixture of bell-shape density distribution functions
    • (speakers: D. Sherrington, S. Tanaka, L. Xu, J. F. Cardoso), organized by S. Amari, S. Tanaka, A. Cichocki, The Institute of Physical and Chemical Research (RIKEN), Japan, 10 April
    • L.Xu, H.H. Yang, S.-I. Amari, Signal source separation by mixtures accumulative distribution functions or mixture of bell-shape density distribution functions, Research Proposal, Presented at FRONTIER FORUM (speakers: D. Sherrington, S. Tanaka, L. Xu, J. F. Cardoso), organized by S. Amari, S. Tanaka, A. Cichocki, The Institute of Physical and Chemical Research (RIKEN), Japan, 10 April 1996.
    • (1996) Research Proposal, Presented at FRONTIER FORUM
    • Xu, L.1    Yang, H.H.2    Amari, S.-I.3
  • 24
    • 0000056917 scopus 로고    scopus 로고
    • Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information
    • Yang H.H., Amari S.-I. Adaptive online learning algorithms for blind separation. maximum entropy and minimum mutual information Neural Comput. 9:1997;1457-1482.
    • (1997) Neural Comput. , vol.9 , pp. 1457-1482
    • Yang, H.H.1    Amari, S.-I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.