-
1
-
-
33749754615
-
A new learning algorithm for blind separation of sources
-
in: D.S. Touretzky, M.C. Mozer, M.E. Hasselmo (Eds.) MIT Press, Cambridge, MA
-
S.-I. Amari, A. Cichocki, H. Yang, A new learning algorithm for blind separation of sources, in: D.S. Touretzky, M.C. Mozer, M.E. Hasselmo (Eds.), Advances in Neural Information Processing, 8, MIT Press, Cambridge, MA, 1996, pp. 757-763.
-
(1996)
Advances in Neural Information Processing
, vol.8
, pp. 757-763
-
-
Amari, S.-I.1
Cichocki, A.2
Yang, H.3
-
2
-
-
0029411030
-
An information-maximatization approach to blind separation and blind deconvolution
-
Bell A.J., Sejnowski T.J. An information-maximatization approach to blind separation and blind deconvolution. Neural Comput. 7:1995;1129-1159.
-
(1995)
Neural Comput.
, vol.7
, pp. 1129-1159
-
-
Bell, A.J.1
Sejnowski, T.J.2
-
3
-
-
0031122399
-
Informax and maximum likelihood for blind source separation
-
J.F. Cardoso, Informax and maximum likelihood for blind source separation, IEEE Signal Process. Lett. 4, 109-111.
-
IEEE Signal Process. Lett.
, vol.4
, pp. 109-111
-
-
Cardoso, J.F.1
-
5
-
-
0344592250
-
-
Master Thesis, Department of Computer Science and Engineering, The Chinese University of Hong Kong, June
-
C.C. Cheung, Adaptive blind signal separation, Master Thesis, Department of Computer Science and Engineering, The Chinese University of Hong Kong, June 1997.
-
(1997)
Adaptive Blind Signal Separation
-
-
Cheung, C.C.1
-
6
-
-
0030707022
-
Separation of two independent sources by the information-theoretic approach with cubic nonlinearity
-
9-12 June Houston, TX, USA
-
C.C. Cheung, L. Xu, Separation of two independent sources by the information-theoretic approach with cubic nonlinearity, Proc. IEEE Int. Conf. on Neural Networks (IEEE-INNS IJCNN97), 9-12 June 1997, Houston, TX, USA, vol. 4, pp. 2239-2244.
-
(1997)
Proc. IEEE Int. Conf. on Neural Networks (IEEE-INNS IJCNN97)
, vol.4
, pp. 2239-2244
-
-
Cheung, C.C.1
Xu, L.2
-
7
-
-
0344678631
-
Independent component analysis for noisy data
-
in: C. Fyfe (Ed.) 9-10 February, Tenerife, Spain, ICSC Academic Press
-
Cichocki et al., Independent component analysis for noisy data in: C. Fyfe (Ed.), Proc. Int. ICSC Workshop on Independence and Artificial neural networks (I&ANN'98), 9-10 February, Tenerife, Spain, ICSC Academic Press, 1998, pp. 52-58.
-
(1998)
Proc. Int. ICSC Workshop on Independence and Artificial Neural Networks (I&ANN'98)
, pp. 52-58
-
-
Cichocki1
-
8
-
-
0028416938
-
Independent component analysis - A new concept?
-
P. Comon, Independent component analysis - a new concept? Signal Process. 36 (1994) 287-314.
-
(1994)
Signal Process.
, vol.36
, pp. 287-314
-
-
Comon, P.1
-
10
-
-
0344247204
-
Adaptive contrast enhancement by entropy maximization with a 1-K-1 constrained network
-
30 October-3 November Beijing
-
I. King, L. Xu, Adaptive contrast enhancement by entropy maximization with a 1-K-1 constrained network, Proc. 1995 Int. Conf. on Neural Information Process. (ICONIP95), 30 October-3 November 1995, Beijing, vol. II, pp. 703-706.
-
(1995)
Proc. 1995 Int. Conf. on Neural Information Process. (ICONIP95)
, vol.2
, pp. 703-706
-
-
King, I.1
Xu, L.2
-
11
-
-
0000772267
-
Nonlinear neurons in the low-noise limit: A factorial code maximizes information transfer
-
Nadal J.-P., Parga N. Nonlinear neurons in the low-noise limit. a factorial code maximizes information transfer Network. 5:1994;565-581.
-
(1994)
Network
, vol.5
, pp. 565-581
-
-
Nadal, J.-P.1
Parga, N.2
-
12
-
-
0344678630
-
ICA Learning rules: Stationarity, stability, and sigmoids
-
in: C. Fyfe (Ed.) 9-10 Febraury, Tenerife, Spain, ICSC Academic Press, New York
-
E. Oja, ICA Learning rules: stationarity, stability, and sigmoids, in: C. Fyfe (Ed.), Proc. of Int. ICSC Workshop on Independence and Artificial Neural Networks (I&ANN'98), 9-10 Febraury, Tenerife, Spain, ICSC Academic Press, New York, 1998, pp. 97-103.
-
(1998)
Proc. of Int. ICSC Workshop on Independence and Artificial Neural Networks (I&ANN'98)
, pp. 97-103
-
-
Oja, E.1
-
13
-
-
84956705985
-
From neural principal components to neural independent components
-
8-10 October, Lausanne, Switzerland
-
E. Oja, J. Karhunen, A. Hyvärinen, From neural principal components to neural independent components, Proc. Int. Conf. on Artificial Neural Networks ICANN'97, 8-10 October, Lausanne, Switzerland, 1997, pp. 519-528.
-
(1997)
Proc. Int. Conf. on Artificial Neural Networks ICANN'97
, pp. 519-528
-
-
Oja, E.1
Karhunen, J.2
Hyvärinen, A.3
-
14
-
-
0002327756
-
A context-sensitive generalization of ICA
-
Hong Kong, 24-27 September 1996, Springer, Singapore
-
B.A. Pearlmutter, L.C. Parra, A context-sensitive generalization of ICA, in: Progress in Neural Information Processing: Proc. Int. Conf. on Neural Information Processing (ICONIP 96), Hong Kong, 24-27 September 1996, Springer, Singapore, 1996, pp. 1235-1239.
-
(1996)
In: Progress in Neural Information Processing: Proc. Int. Conf. on Neural Information Processing (ICONIP 96)
, pp. 1235-1239
-
-
Pearlmutter, B.A.1
Parra, L.C.2
-
15
-
-
0002049291
-
Separation of a mixture of independent sources through a maximum likelihood approach
-
J. et al. Vandewalle. Amsterdam: Elsevier
-
Pham D.T., Garat P., Jutten C. Separation of a mixture of independent sources through a maximum likelihood approach. Vandewalle J.et al. Singal Processing VI. Theories and Applications:1992;771-774 Elsevier, Amsterdam.
-
(1992)
Singal Processing VI: Theories and Applications
, pp. 771-774
-
-
Pham, D.T.1
Garat, P.2
Jutten, C.3
-
16
-
-
0006005149
-
Bayesian Ying-Yang System and Theory as A Unified Statistical Learning Approach: (I) Unsupervised and Semi-Unsupervised Learning, Invited paper
-
S. Amari, & N. Kassabov. Berlin: Springer
-
Xu L. Bayesian Ying-Yang System and Theory as A Unified Statistical Learning Approach: (I) Unsupervised and Semi-Unsupervised Learning, Invited paper. Amari S., Kassabov N. Brain-like Computing and Intelligent Information Systems. 1997;241-274 Springer, Berlin.
-
(1997)
Brain-like Computing and Intelligent Information Systems
, pp. 241-274
-
-
Xu, L.1
-
17
-
-
0038259620
-
Bayesian Ying-Yang system and theory as a unified statistical learning approach (II): From unsupervised learning to supervised learning and temporal modeling and (III): Models and algorithms for dependence reduction, data dimension reduction, ICA and supervised learning
-
in: K.W. Wong, I. King, D.Y. Yeung (Eds.) Springer, Berlin
-
L. Xu, Bayesian Ying-Yang system and theory as a unified statistical learning approach (II): from unsupervised learning to supervised learning and temporal modeling and (III): models and algorithms for dependence reduction, data dimension reduction, ICA and supervised learning, in: K.W. Wong, I. King, D.Y. Yeung (Eds.), Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective (TANC97), Springer, Berlin, 1997, pp. 25-60.
-
(1997)
Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective (TANC97)
, pp. 25-60
-
-
Xu, L.1
-
19
-
-
0031632920
-
BYY dependence reduction theory and blind source separation
-
5-9 May Anchorage, Alaska
-
L. Xu, BYY dependence reduction theory and blind source separation, Proc. Intentional Joint Conf. on Neural Networks, 5-9 May 1998, Anchorage, Alaska, Vol. II, pp. 2495-2500.
-
(1998)
Proc. Intentional Joint Conf. on Neural Networks
, vol.2
, pp. 2495-2500
-
-
Xu, L.1
-
20
-
-
0345023271
-
A general independent component analysis framework based on Bayesian-Kullback Ying-Yang Learning
-
Hong Kong, 24-27 September 1996, Springer, Singapore
-
L. Xu, S.-I. Amari, A general independent component analysis framework based on Bayesian-Kullback Ying-Yang Learning, in: Progress in Neural Information Processing: Proc. Int. Conf. on Neural Information Processing (ICONIP 96), Hong Kong, 24-27 September 1996, Springer, Singapore, 1996, pp. 1235-1239.
-
(1996)
In: Progress in Neural Information Processing: Proc. Int. Conf. on Neural Information Processing (ICONIP 96)
, pp. 1235-1239
-
-
Xu, L.1
Amari, S.-I.2
-
21
-
-
0012892315
-
Nonlinearity and separation capability: Further justification for the ICA algorithm with a learned mixture of parametric densities
-
Bruges, 16-18 April
-
L. Xu, C.C. Cheung, J. Ruan, S.-I. Amari, Nonlinearity and separation capability: further justification for the ICA algorithm with a learned mixture of parametric densities, Invited special session on Blind Signal Separation, Proc. European Symp. on Artificial Neural Networks, Bruges, 16-18 April 1997, pp. 291-296.
-
(1997)
Invited Special Session on Blind Signal Separation, Proc. European Symp. on Artificial Neural Networks
, pp. 291-296
-
-
Xu, L.1
Cheung, C.C.2
Ruan, J.3
Amari, S.-I.4
-
22
-
-
0030706830
-
Independent component analysis by the information-theoretic approach with mixture of density
-
9-12 June, Houston, TX, USA
-
L. Xu, C.C. Cheung, H.H. Yang, S.-I. Amari, Independent component analysis by the information-theoretic approach with mixture of density, Proc. IEEE Int. Conf. on Neural Networks (IEEE-INNS IJCNN97), 9-12 June, Houston, TX, USA, 1997, pp. 1821-1826.
-
(1997)
Proc. IEEE Int. Conf. on Neural Networks (IEEE-INNS IJCNN97)
, pp. 1821-1826
-
-
Xu, L.1
Cheung, C.C.2
Yang, H.H.3
Amari, S.-I.4
-
23
-
-
0345109528
-
Signal source separation by mixtures accumulative distribution functions or mixture of bell-shape density distribution functions
-
(speakers: D. Sherrington, S. Tanaka, L. Xu, J. F. Cardoso), organized by S. Amari, S. Tanaka, A. Cichocki, The Institute of Physical and Chemical Research (RIKEN), Japan, 10 April
-
L.Xu, H.H. Yang, S.-I. Amari, Signal source separation by mixtures accumulative distribution functions or mixture of bell-shape density distribution functions, Research Proposal, Presented at FRONTIER FORUM (speakers: D. Sherrington, S. Tanaka, L. Xu, J. F. Cardoso), organized by S. Amari, S. Tanaka, A. Cichocki, The Institute of Physical and Chemical Research (RIKEN), Japan, 10 April 1996.
-
(1996)
Research Proposal, Presented at FRONTIER FORUM
-
-
Xu, L.1
Yang, H.H.2
Amari, S.-I.3
-
24
-
-
0000056917
-
Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information
-
Yang H.H., Amari S.-I. Adaptive online learning algorithms for blind separation. maximum entropy and minimum mutual information Neural Comput. 9:1997;1457-1482.
-
(1997)
Neural Comput.
, vol.9
, pp. 1457-1482
-
-
Yang, H.H.1
Amari, S.-I.2
|