메뉴 건너뛰기




Volumn 10, Issue 8, 1998, Pages 2103-2114

An Alternative Perspective on Adaptive Independent Component Analysis Algorithms

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0000324990     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976698300016981     Document Type: Article
Times cited : (81)

References (38)
  • 1
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • Amari, S. (1998). Natural gradient works efficiently in learning. Neural Computation, 10, 251-276.
    • (1998) Neural Computation , vol.10 , pp. 251-276
    • Amari, S.1
  • 2
    • 0031271273 scopus 로고    scopus 로고
    • Blind source separation - Semi-parametric statistical approach
    • Amari, S., & Cardoso, J-F. (1997). Blind source separation - Semi-parametric statistical approach. IEEE Transactions on Signal Processing, 45(11), 2692-2700.
    • (1997) IEEE Transactions on Signal Processing , vol.45 , Issue.11 , pp. 2692-2700
    • Amari, S.1    Cardoso, J.-F.2
  • 3
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind signal separation
    • Amari, S., Cichocki, A., & Yang, H. (1996). A new learning algorithm for blind signal separation. Neural Information Processing, 8, 757-763.
    • (1996) Neural Information Processing , vol.8 , pp. 757-763
    • Amari, S.1    Cichocki, A.2    Yang, H.3
  • 4
    • 0029411030 scopus 로고
    • An information maximisation approach to blind separation and blind deconvolution
    • Bell, A., & Sejnowski, T. (1995). An information maximisation approach to blind separation and blind deconvolution. Neural Computation, 7, 1129-1159.
    • (1995) Neural Computation , vol.7 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.2
  • 5
    • 0030832881 scopus 로고    scopus 로고
    • The independent components of natural scenes are edge filters
    • Bell, A., & Sejnowski, T. (1997). The independent components of natural scenes are edge filters. Vision Research, 37(23), 3327-3338.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3327-3338
    • Bell, A.1    Sejnowski, T.2
  • 7
    • 0010134082 scopus 로고    scopus 로고
    • Entropic contrasts for source separation
    • S. Haykin (Ed.)
    • Cardoso, J. F. (1998b). Entropic contrasts for source separation. In S. Haykin (Ed.), Unsupervised adaptive filtering.
    • (1998) Unsupervised Adaptive Filtering
    • Cardoso, J.F.1
  • 10
    • 0028498103 scopus 로고
    • Robust learning algorithm for blind separation of signals
    • Cichocki, A., Unbehauen, R., & Rummert, E. (1994). Robust learning algorithm for blind separation of signals. Electronics Letters, 30, 1386-1387.
    • (1994) Electronics Letters , vol.30 , pp. 1386-1387
    • Cichocki, A.1    Unbehauen, R.2    Rummert, E.3
  • 11
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Comon, P. (1994). Independent component analysis, a new concept? Signal Processing, 36, 287-314.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 13
    • 0003578015 scopus 로고
    • Portsmouth, NH: Heinemann Educational Books
    • Everitt, B. S. (1993). Cluster analysis. Portsmouth, NH: Heinemann Educational Books.
    • (1993) Cluster Analysis
    • Everitt, B.S.1
  • 14
    • 0030674678 scopus 로고    scopus 로고
    • Generalised independent component analysis through unsupervised learning with emergent Bussgang properties
    • Girolami, M., & Fyfe, C. (1997a). Generalised independent component analysis through unsupervised learning with emergent Bussgang properties. In Proc I.E.E.E/I.C.N.N, International Conference on Neural Networks (pp. 1788-1891).
    • (1997) Proc I.E.E.E/I.C.N.N, International Conference on Neural Networks , pp. 1788-1891
    • Girolami, M.1    Fyfe, C.2
  • 15
    • 0031251223 scopus 로고    scopus 로고
    • Extraction of independent signal sources using a deflationary exploratory projection pursuit network with lateral inhibition
    • Girolami, M., & Fyfe, C. (1997b). Extraction of independent signal sources using a deflationary exploratory projection pursuit network with lateral inhibition. In I.E.E. Proceedings on Vision, Image and Signal Processing (Vol. 14, 5, pp. 299-306).
    • (1997) I.E.E. Proceedings on Vision, Image and Signal Processing , vol.14 , Issue.5 , pp. 299-306
    • Girolami, M.1    Fyfe, C.2
  • 17
    • 0032143832 scopus 로고    scopus 로고
    • The latent variable data model for exploratory data analysis and visualisation: A generalisation of the nonlinear infomax algorithm
    • Girolami, M. (1998). The latent variable data model for exploratory data analysis and visualisation: A generalisation of the nonlinear infomax algorithm. Neural Processing Letters.
    • (1998) Neural Processing Letters
    • Girolami, M.1
  • 18
    • 0007151183 scopus 로고    scopus 로고
    • A common neural network model for exploratory data analysis and independent component analysis
    • (Tech. Rep. No. BIP-97-001). Saitama, Japan: RIKEN, Brain Science Institute
    • Girolami, M., Cichocki, A., & Amari, S. I. (1997). A common neural network model for exploratory data analysis and independent component analysis. Brain Information Processing Group (Tech. Rep. No. BIP-97-001). Saitama, Japan: RIKEN, Brain Science Institute.
    • (1997) Brain Information Processing Group
    • Girolami, M.1    Cichocki, A.2    Amari, S.I.3
  • 19
    • 0004209078 scopus 로고
    • Englewood Cliffs, NJ: Prentice Hall
    • Haykin, S. (1994). Blind deconvolution. Englewood Cliffs, NJ: Prentice Hall.
    • (1994) Blind Deconvolution
    • Haykin, S.1
  • 20
    • 0030322997 scopus 로고    scopus 로고
    • Simple neuron models for independent component analysis
    • Hyvarinen, A., and Oja, E. (1996). Simple neuron models for independent component analysis. International Journal of Neural Systems, 7, 671-687.
    • (1996) International Journal of Neural Systems , vol.7 , pp. 671-687
    • Hyvarinen, A.1    Oja, E.2
  • 22
    • 0026191274 scopus 로고
    • Blind separation of sources, part 1: An adaptive algorithm based on neuromimetic architecture
    • Jutten, C., & Herault, J. (1991). Blind separation of sources, part 1: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 24, 1-10.
    • (1991) Signal Processing , vol.24 , pp. 1-10
    • Jutten, C.1    Herault, J.2
  • 23
    • 0002580546 scopus 로고    scopus 로고
    • Neural approaches to independent component analysis and source separation
    • Karhunen, J. (1996). Neural approaches to independent component analysis and source separation. In Proc. ESANN'96 (pp. 249-266).
    • (1996) Proc. ESANN'96 , pp. 249-266
    • Karhunen, J.1
  • 24
    • 0028272776 scopus 로고
    • Representation and separation of signals using nonlinear PCA type learning
    • Karhunen, J., & Joutsensalo, J. (1994). Representation and separation of signals using nonlinear PCA type learning. Neural Networks, 7, 113-127.
    • (1994) Neural Networks , vol.7 , pp. 113-127
    • Karhunen, J.1    Joutsensalo, J.2
  • 28
    • 0001144814 scopus 로고    scopus 로고
    • Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources
    • Lee, T. W., Girolami, M., & Sejnowski, T. (1998). Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation.
    • (1998) Neural Computation
    • Lee, T.W.1    Girolami, M.2    Sejnowski, T.3
  • 29
    • 0347961826 scopus 로고    scopus 로고
    • A linear adaptive neural network for extraction of independent components
    • Malouche, Z., & Macchi, O. (1997). A linear adaptive neural network for extraction of independent components. ESANN'97, Special ICA Session (pp. 261-266).
    • (1997) ESANN'97, Special ICA Session , pp. 261-266
    • Malouche, Z.1    Macchi, O.2
  • 31
    • 0030676410 scopus 로고    scopus 로고
    • Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models
    • Moulines, E., Cardoso, J. F., & Gassiat, E. (1997). Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. In Proc. ICASSP'97 (Vol. 5, pp. 3617-3620).
    • (1997) Proc. ICASSP'97 , vol.5 , pp. 3617-3620
    • Moulines, E.1    Cardoso, J.F.2    Gassiat, E.3
  • 32
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyser
    • Oja, E. (1982). A simplified neuron model as a principal component analyser. Journal of Mathematical Biology, 15, 267-273.
    • (1982) Journal of Mathematical Biology , vol.15 , pp. 267-273
    • Oja, E.1
  • 33
    • 0002399288 scopus 로고
    • Neural networks, principal components and subspaces
    • Oja, E. (1989). Neural networks, principal components and subspaces. International Journal of Neural Systems, 1, 61-68.
    • (1989) International Journal of Neural Systems , vol.1 , pp. 61-68
    • Oja, E.1
  • 34
    • 0343416807 scopus 로고    scopus 로고
    • The nonlinear PCA learning rule in independent component analysis
    • Oja, E. (1997). The nonlinear PCA learning rule in independent component analysis. Neurocomputing, 17, 25-45.
    • (1997) Neurocomputing , vol.17 , pp. 25-45
    • Oja, E.1
  • 36
    • 0002100868 scopus 로고
    • Contributions to the mathematical study of evolution
    • Pearson, K. (1894). Contributions to the mathematical study of evolution. Phil. Trans. Roy. Soc., A 185, 71.
    • (1894) Phil. Trans. Roy. Soc., A , vol.185 , pp. 71
    • Pearson, K.1
  • 38
    • 0030706830 scopus 로고    scopus 로고
    • Independent component analysis by the information theoretic approach with mixture of density
    • Xu, L., Cheung, C., Yang, H., & Amari, S-I. (1997). Independent component analysis by the information theoretic approach with mixture of density. In Proc. IEEE International Conference on Neural Networks (Vol. 3, 1821-1826).
    • (1997) Proc. IEEE International Conference on Neural Networks , vol.3 , pp. 1821-1826
    • Xu, L.1    Cheung, C.2    Yang, H.3    Amari, S.-I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.