-
2
-
-
0001964537
-
-
(b) Arseniyadis, S.; Kyler, K. S.; Watt, D. S. Org. React. 1984, 31, 1.
-
(1984)
Org. React
, vol.31
, pp. 1
-
-
Arseniyadis, S.1
Kyler, K.S.2
Watt, D.S.3
-
3
-
-
0033518558
-
-
(a) Richard, J. P.; Williams, G.; Gao, J. J. Am. Chem. Soc. 1999, 121, 715.
-
(1999)
J. Am. Chem. Soc
, vol.121
, pp. 715
-
-
Richard, J.P.1
Williams, G.2
Gao, J.3
-
5
-
-
33947090861
-
-
(c) Dayal, S. K.; Ehrenson, S.; Taft, R. W. J. Am. Chem. Soc. 1972, 94, 9113.
-
(1972)
J. Am. Chem. Soc
, vol.94
, pp. 9113
-
-
Dayal, S.K.1
Ehrenson, S.2
Taft, R.W.3
-
6
-
-
33846967312
-
-
-1: Eliel, Ernest L.; Wilen, Samuel H.; Mander, Lewis N. In Stereochemistry of Organic Compounds; Wiley: New York, 1994; pp 696-7.
-
-1: Eliel, Ernest L.; Wilen, Samuel H.; Mander, Lewis N. In Stereochemistry of Organic Compounds; Wiley: New York, 1994; pp 696-7.
-
-
-
-
7
-
-
0004088819
-
-
Rappoport. Z, Ed, Interscience Publishers: New York, Chapter 5
-
Sheppard, W. A. In The Chemistry of the Cyano Group; Rappoport. Z., Ed.; Interscience Publishers: New York, 1970; Chapter 5.
-
(1970)
The Chemistry of the Cyano Group
-
-
Sheppard, W.A.1
-
10
-
-
0001686345
-
-
(b) Carlier, P. R.; Lucht, B. L.; Collum, D. B. J. Am. Chem. Soc. 1994, 116, 11602.
-
(1994)
J. Am. Chem. Soc
, vol.116
, pp. 11602
-
-
Carlier, P.R.1
Lucht, B.L.2
Collum, D.B.3
-
12
-
-
0034008787
-
-
(a) Tanabe, Y.; Seino, H.; Ishii, Y.; Hidai, M. J. Am. Chem. Soc. 2000, 122, 1690.
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 1690
-
-
Tanabe, Y.1
Seino, H.2
Ishii, Y.3
Hidai, M.4
-
13
-
-
0033915260
-
-
(b) Murahashi, S.-I.; Take, K.; Naota, T.; Takaya, H. Synlett 2000, 1016-1018.
-
(2000)
Synlett
, pp. 1016-1018
-
-
Murahashi, S.-I.1
Take, K.2
Naota, T.3
Takaya, H.4
-
14
-
-
0033556019
-
-
(c) Triki, S.; Pala, J. S.; Decoster, M.; Molinié, P.; Toupet, L. Angew. Chem., Int. Ed. 1999, 38, 113.
-
(1999)
Angew. Chem., Int. Ed
, vol.38
, pp. 113
-
-
Triki, S.1
Pala, J.S.2
Decoster, M.3
Molinié, P.4
Toupet, L.5
-
15
-
-
33749093359
-
-
(d) Hirano, M.; Takenaka, A.; Mizuho, Y.; Hiraoka, M.; Komiya, S. J. Chem. Soc., Dalton Trans. 1999, 3209.
-
(1999)
J. Chem. Soc., Dalton Trans
, pp. 3209
-
-
Hirano, M.1
Takenaka, A.2
Mizuho, Y.3
Hiraoka, M.4
Komiya, S.5
-
16
-
-
0001024204
-
-
(e) Yates, M. L.; Arif, A. M.; Manson, J. L.; Kalm, B. A.; Burkhart, B. M.; Miller, J. S. Inorg. Chem. 1998, 37, 840.
-
(1998)
Inorg. Chem
, vol.37
, pp. 840
-
-
Yates, M.L.1
Arif, A.M.2
Manson, J.L.3
Kalm, B.A.4
Burkhart, B.M.5
Miller, J.S.6
-
17
-
-
0005937022
-
-
(f) Jäger, L.; Tretner, C.; Hartung, H.; Biedermann, M. Chem. Ber. 1997, 130, 1007.
-
(1997)
Chem. Ber
, vol.130
, pp. 1007
-
-
Jäger, L.1
Tretner, C.2
Hartung, H.3
Biedermann, M.4
-
18
-
-
0030455402
-
-
(g) Zhao, H.; Heintz, R. A.; Dunbar, K. R.; Rogers, R. D. J. Am. Chem. Soc. 1996, 118, 12844.
-
(1996)
J. Am. Chem. Soc
, vol.118
, pp. 12844
-
-
Zhao, H.1
Heintz, R.A.2
Dunbar, K.R.3
Rogers, R.D.4
-
19
-
-
15844412400
-
-
(h) Murahashi, S.-I.; Naota, T.; Taki, H.; Mizuno, M.; Takaya, H.; Komiya, S.; Mizuho, Y.; Oyasato, N.; Hiraoka, M.; Hirano, M.; Fukuoka, A. J. Am. Chem. Soc. 1995, 117, 12436.
-
(1995)
J. Am. Chem. Soc
, vol.117
, pp. 12436
-
-
Murahashi, S.-I.1
Naota, T.2
Taki, H.3
Mizuno, M.4
Takaya, H.5
Komiya, S.6
Mizuho, Y.7
Oyasato, N.8
Hiraoka, M.9
Hirano, M.10
Fukuoka, A.11
-
20
-
-
0002190740
-
-
(i) Hirano, M.; Ito, Y.; Hirai, M.; Fukuoka, A.; Komiya, S. Chem. Lett. 1993, 2057.
-
(1993)
Chem. Lett
, pp. 2057
-
-
Hirano, M.1
Ito, Y.2
Hirai, M.3
Fukuoka, A.4
Komiya, S.5
-
24
-
-
0037134866
-
-
(a) Naota, T.; Tannna, A.; Kamuro, S.; Murahashi, S.-I. J. Am. Chem. Soc. 2002, 124, 6842.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 6842
-
-
Naota, T.1
Tannna, A.2
Kamuro, S.3
Murahashi, S.-I.4
-
25
-
-
0034728564
-
-
(b) Naota, T.; Tannna, A.; Murahashi, S.-I. J. Am. Chem. Soc. 2000, 122, 2960.
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 2960
-
-
Naota, T.1
Tannna, A.2
Murahashi, S.-I.3
-
26
-
-
0034651472
-
-
(c) Alburquerque, P. R.; Pinhas, A. R.; Krause, Bauer, J. A. Inorg. Chim. Acta 2000, 298, 239.
-
(2000)
Inorg. Chim. Acta
, vol.298
, pp. 239
-
-
Alburquerque, P.R.1
Pinhas, A.R.2
-
27
-
-
0000175562
-
-
(d) Ruiz, J.; Rodriguez, V.; López, G.; Casabó, J.; Molins, E.; Miravitlles, C. Organometallics 1999, 18, 1177.
-
(1999)
Organometallics
, vol.18
, pp. 1177
-
-
Ruiz, J.1
Rodriguez, V.2
López, G.3
Casabó, J.4
Molins, E.5
Miravitlles, C.6
-
28
-
-
0000632266
-
-
(e) Ragaini, F.; Porta, F.; Fumagalli, A.; Demartin, F Organometallics 1991, 10, 3785.
-
(1991)
Organometallics
, vol.10
, pp. 3785
-
-
Ragaini, F.1
Porta, F.2
Fumagalli, A.3
Demartin, F.4
-
29
-
-
0000497665
-
-
(f) Porta, F.; Ragaini, F.; Cenini, S.; Demartin, F. Organometallics 1990, 9, 929.
-
(1990)
Organometallics
, vol.9
, pp. 929
-
-
Porta, F.1
Ragaini, F.2
Cenini, S.3
Demartin, F.4
-
30
-
-
0343969469
-
-
(g) Ko, J. J.; Bockman, T. M.; Kochi, J. K. Organometallics 1990, 9, 1833.
-
(1990)
Organometallics
, vol.9
, pp. 1833
-
-
Ko, J.J.1
Bockman, T.M.2
Kochi, J.K.3
-
32
-
-
37049082898
-
-
(i) Chopra, S. K.; Cunningham, D.; Kavanagh, S.; McArdle, P.; Moran, G. J. Chem. Soc., Dalton Trans. 1987, 2927.
-
(1987)
J. Chem. Soc., Dalton Trans
, pp. 2927
-
-
Chopra, S.K.1
Cunningham, D.2
Kavanagh, S.3
McArdle, P.4
Moran, G.5
-
33
-
-
37049099277
-
-
(j) Del Pra, A.; Forsellini, E.; Bombieri, G.; Michelin, R. A.; Ros, R. J. Chem. Soc., Dalton Trans. 1979, 1862.
-
(1979)
J. Chem. Soc., Dalton Trans
, pp. 1862
-
-
Del Pra, A.1
Forsellini, E.2
Bombieri, G.3
Michelin, R.A.4
Ros, R.5
-
34
-
-
37049107708
-
-
(k) Lenarda, M.; Pahor, N. B.; Calligaris, M.; Graziani, M.; Randaccio, L. J. Chem. Soc., Chem. Commun. 1978, 279.
-
(1978)
J. Chem. Soc., Chem. Commun
, pp. 279
-
-
Lenarda, M.1
Pahor, N.B.2
Calligaris, M.3
Graziani, M.4
Randaccio, L.5
-
35
-
-
0006426165
-
-
(l) Schlodder, R.; Ibers, J. A.; Lenarda, M.; Graziani, M. J. Am. Chem. Soc. 1974, 96, 6893.
-
(1974)
J. Am. Chem. Soc
, vol.96
, pp. 6893
-
-
Schlodder, R.1
Ibers, J.A.2
Lenarda, M.3
Graziani, M.4
-
36
-
-
0007882537
-
-
(m) Yarrow, D. J.; Ibers, J. A.; Lenarda, M.; Graziani, M. J. Organomet. Chem. 1974, 70, 133.
-
(1974)
J. Organomet. Chem
, vol.70
, pp. 133
-
-
Yarrow, D.J.1
Ibers, J.A.2
Lenarda, M.3
Graziani, M.4
-
37
-
-
2542514849
-
-
Fluxional mixtures of N- and C-metalated nitriles are observed in some instances: Sott, R.; Granander, J.; Hilmersson, G. J. Am. Chem. Soc. 2004, 126, 6798.
-
Fluxional mixtures of N- and C-metalated nitriles are observed in some instances: Sott, R.; Granander, J.; Hilmersson, G. J. Am. Chem. Soc. 2004, 126, 6798.
-
-
-
-
38
-
-
0000556636
-
-
N-C-X angle where X is the midpoint between the two substituents at the anionic carbon: Wiberg, K. B.; Castejon, H. J. Org. Chem. 1995, 60, 6327.
-
N-C-X angle where X is the midpoint between the two substituents at the anionic carbon: Wiberg, K. B.; Castejon, H. J. Org. Chem. 1995, 60, 6327.
-
-
-
-
39
-
-
0037263577
-
-
For a discussion of the inversion barrier and mechanism see
-
For a discussion of the inversion barrier and mechanism see: Carlier, P. R. Chirality 2003, 15, 340.
-
(2003)
Chirality
, vol.15
, pp. 340
-
-
Carlier, P.R.1
-
41
-
-
33947086979
-
-
(a) Stork, G.; Gardner, J. O.; Boeckman, R. K., Jr.; Parker, K. A. J. Am. Chem. Soc. 1973, 95, 2014.
-
(1973)
J. Am. Chem. Soc
, vol.95
, pp. 2014
-
-
Stork, G.1
Gardner, J.O.2
Boeckman Jr., R.K.3
Parker, K.A.4
-
43
-
-
0033550167
-
-
Chelation of nitriles by lithium cations is directly analagous to the chelation of organolithiums with proximal alkenes and aromatic π systems: (a) Harris, C. R, Danishefsky, S. J. J. Org. Chem. 1999, 64, 8434
-
Chelation of nitriles by lithium cations is directly analagous to the chelation of organolithiums with proximal alkenes and aromatic π systems: (a) Harris, C. R.; Danishefsky, S. J. J. Org. Chem. 1999, 64, 8434.
-
-
-
-
45
-
-
0000576830
-
-
(c) Bailey, W. F.; Khanolkar, A. D.; Gavaskar, K.; Ovaska, T. V.; Rossi, K.; Thiel, Y.; Wiberg, K. B. J. Am. Chem. Soc. 1991, 113, 5720.
-
(1991)
J. Am. Chem. Soc
, vol.113
, pp. 5720
-
-
Bailey, W.F.1
Khanolkar, A.D.2
Gavaskar, K.3
Ovaska, T.V.4
Rossi, K.5
Thiel, Y.6
Wiberg, K.B.7
-
47
-
-
0034736354
-
-
(b) Davis, F. A.; Mohanty, P. K.; Burns, D. M.; Andemichael, Y. W. Org. Lett. 2000, 2, 3901.
-
(2000)
Org. Lett
, vol.2
, pp. 3901
-
-
Davis, F.A.1
Mohanty, P.K.2
Burns, D.M.3
Andemichael, Y.W.4
-
48
-
-
29744432688
-
-
(c) Schrader, T.; Kirsten, C.; Herm, M. Phosphorous, Sulfur, Silicon 1999, 161, 144-146.
-
(1999)
Phosphorous, Sulfur, Silicon
, vol.161
, pp. 144-146
-
-
Schrader, T.1
Kirsten, C.2
Herm, M.3
-
50
-
-
37049090635
-
-
(e) Murray, A. W.; Murray, N. D.; Reid, R. G. J. Chem. Soc., Chem. Commun. 1986, 1230.
-
(1986)
J. Chem. Soc., Chem. Commun
, pp. 1230
-
-
Murray, A.W.1
Murray, N.D.2
Reid, R.G.3
-
51
-
-
0030529861
-
-
Michelin, R. A.; Mozzon, M.; Bertani, R. Coord. Chem. Rev. 1996, 147, 299.
-
(1996)
Coord. Chem. Rev
, vol.147
, pp. 299
-
-
Michelin, R.A.1
Mozzon, M.2
Bertani, R.3
-
52
-
-
0033235147
-
-
(a) Kakiuchi, F.; Sonoda. M.; Tsujimoto, T.; Chatani, N.; Murai, S. Chem. Lett. 1999, 1083.
-
(1999)
Chem. Lett
, pp. 1083
-
-
Kakiuchi, F.1
Sonoda, M.2
Tsujimoto, T.3
Chatani, N.4
Murai, S.5
-
54
-
-
0035930002
-
-
For a related interaction between fluorine and the nitrile π-electrons see
-
For a related interaction between fluorine and the nitrile π-electrons see: Nishide, K.; Hagimoto, Y.; Hasegawa, H.; Shiro, M.; Node, M. Chem. Commun. 2001, 2394.
-
(2001)
Chem. Commun
, pp. 2394
-
-
Nishide, K.1
Hagimoto, Y.2
Hasegawa, H.3
Shiro, M.4
Node, M.5
-
55
-
-
33846959670
-
-
6 that preferentially cyclizes to the cis-decalin 9 for geometric reasons (cf. 4 → 5a′ → 6. Scheme 1).
-
6 that preferentially cyclizes to the cis-decalin 9 for geometric reasons (cf. 4 → 5a′ → 6. Scheme 1).
-
-
-
-
56
-
-
0037415522
-
-
(a) Fleming, F. F.; Shook, B. C.; Jiang, T.; Steward, O. W. Tetrahedron 2003, 59, 737.
-
(2003)
Tetrahedron
, vol.59
, pp. 737
-
-
Fleming, F.F.1
Shook, B.C.2
Jiang, T.3
Steward, O.W.4
-
57
-
-
0033581754
-
-
(b) Fleming, F. F.; Shook, B. C.; Jiang, T.; Steward, O. W. Org. Lett. 1999, 1, 1547.
-
(1999)
Org. Lett
, vol.1
, pp. 1547
-
-
Fleming, F.F.1
Shook, B.C.2
Jiang, T.3
Steward, O.W.4
-
58
-
-
0001018933
-
-
2 leads directly to N-metalated nitriles: Koch, R.; Wiedel, B.; Anders, E. J. Org. Chein. 1996, 61, 2523.
-
2 leads directly to N-metalated nitriles: Koch, R.; Wiedel, B.; Anders, E. J. Org. Chein. 1996, 61, 2523.
-
-
-
-
59
-
-
33846989643
-
-
Chelation in THF is favored because the lithium is maintained in close proximity by the strong oxygen-lithium bond whereas the weaker Lewis acid interaction observed in 11 requires the less coordinating solvent benzene to be effective
-
Chelation in THF is favored because the lithium is maintained in close proximity by the strong oxygen-lithium bond whereas the weaker Lewis acid interaction observed in 11 requires the less coordinating solvent benzene to be effective.
-
-
-
-
60
-
-
0032192409
-
-
Jankowski, P.; Marczak, S.; Wicha, J. Tetrahedron 1998, 54, 12071.
-
(1998)
Tetrahedron
, vol.54
, pp. 12071
-
-
Jankowski, P.1
Marczak, S.2
Wicha, J.3
-
61
-
-
0019191856
-
-
Bernady, K. F.; Poletto, J. F.; Nocera, J.; Mirando, P.; Schaub, R. E.; Weiss, M. J. J. Org. Chem. 1980, 45, 4702.
-
(1980)
J. Org. Chem
, vol.45
, pp. 4702
-
-
Bernady, K.F.1
Poletto, J.F.2
Nocera, J.3
Mirando, P.4
Schaub, R.E.5
Weiss, M.J.6
-
62
-
-
33845550632
-
-
d (a) Olah, G. A.; Husain, A.; Singh, B. P.; Mehrotra, A. K. J. Org. Chem. 1983, 48, 3667.
-
d (a) Olah, G. A.; Husain, A.; Singh, B. P.; Mehrotra, A. K. J. Org. Chem. 1983, 48, 3667.
-
-
-
-
63
-
-
0001484523
-
-
(b) Olah, G. A.; Gupta, B. G. B.; Malhotra, R.; Narang, S. C. J. Org. Chem. 1980, 45, 1638.
-
(1980)
J. Org. Chem
, vol.45
, pp. 1638
-
-
Olah, G.A.1
Gupta, B.G.B.2
Malhotra, R.3
Narang, S.C.4
-
64
-
-
0003686469
-
-
(c) Olah, G. A.; Narang, S. C.; Gupta, B. G. B.; Malhotra, R. J. Org. Chem. 1979, 44, 1247.
-
(1979)
J. Org. Chem
, vol.44
, pp. 1247
-
-
Olah, G.A.1
Narang, S.C.2
Gupta, B.G.B.3
Malhotra, R.4
-
65
-
-
0000358709
-
-
(d) Zhu, L.; Wehmeyer, R. M.; Rieke, R. D. J. Org. Chem. 1991, 56, 1445.
-
(1991)
J. Org. Chem
, vol.56
, pp. 1445
-
-
Zhu, L.1
Wehmeyer, R.M.2
Rieke, R.D.3
-
68
-
-
33645396229
-
-
Although the axial β-hydroxynitriles are the minor components in this sequence, several strategies exist for selectively reducing the oxonitrile precursor into either diastereomer: Fleming, F. F, Iyer, P. S. Synthesis 2006, 893
-
Although the axial β-hydroxynitriles are the minor components in this sequence, several strategies exist for selectively reducing the oxonitrile precursor into either diastereomer: Fleming, F. F.; Iyer, P. S. Synthesis 2006, 893.
-
-
-
-
69
-
-
0001732026
-
-
The two syn axial interactions with the forming methylene carbon are probably less than the assigned 0.85 kcal mol-1 since the transition state for nitrile anion alkylations is early: Bare, T. H, Hershey, N. D, House, H. O, Swain, C. G. J. Org. Chem. 1972, 37, 997
-
-1 since the transition state for nitrile anion alkylations is early: Bare, T. H.; Hershey, N. D.; House, H. O.; Swain, C. G. J. Org. Chem. 1972, 37, 997.
-
-
-
-
70
-
-
33846983775
-
-
Stereoelectronic effects are purported to be more influential in the transition state and particularly in nonpolar solvents vide infra, Chandrasekhar, S. ARKIVOC 2005, 13, 37
-
Stereoelectronic effects are purported to be more influential in the transition state and particularly in nonpolar solvents (vide infra): Chandrasekhar, S. ARKIVOC 2005, 13, 37.
-
-
-
-
71
-
-
33846990311
-
-
The syn-axial interactions of the nitrile and alkoxide groups in 21b and 21c are identical in this comparative analysis.
-
The syn-axial interactions of the nitrile and alkoxide groups in 21b and 21c are identical in this comparative analysis.
-
-
-
-
72
-
-
0037204694
-
-
2 (1 equiv) and NaH (1 equiv) or MeMgCl (2.1 equiv) causes elimination to the cyclic alkenenitrile: (a) Fleming, F. F.; Shook, B. C. J. Org. Chem. 2002, 67, 3668.
-
2 (1 equiv) and NaH (1 equiv) or MeMgCl (2.1 equiv) causes elimination to the cyclic alkenenitrile: (a) Fleming, F. F.; Shook, B. C. J. Org. Chem. 2002, 67, 3668.
-
-
-
-
74
-
-
33846977244
-
-
20a
-
20a
-
-
-
-
75
-
-
33846972864
-
-
Nitrile 20a cyclizes exclusively to the cis-decalin 25 regardless of the stereochemistry of the nitrile bearing carbon.
-
Nitrile 20a cyclizes exclusively to the cis-decalin 25 regardless of the stereochemistry of the nitrile bearing carbon.
-
-
-
-
76
-
-
33846981008
-
-
20b
-
20b
-
-
-
-
77
-
-
33846984116
-
-
The range in yield reflects differences in reaction efficiencies from diastereomeric nitrile precursors
-
The range in yield reflects differences in reaction efficiencies from diastereomeric nitrile precursors.
-
-
-
-
78
-
-
33846971471
-
-
Jones oxidation of 34 and 33 afforded two diastereomeric hydrindanones ix and x with the former being identical with that obtained by Jones oxidation of 30.
-
Jones oxidation of 34 and 33 afforded two diastereomeric hydrindanones ix and x with the former being identical with that obtained by Jones oxidation of 30.
-
-
-
-
79
-
-
33846960606
-
-
3
-
3
-
-
-
-
81
-
-
33846941775
-
-
The stereochemistry was determined by conversion to the corresponding p-nitrobezoate xii whose stereochemistry was determined by X-ray crystallography. The authors have deposited the crystallographic data for xii with the Cambridge Crystallographic Data Center (CCDC 626356). The data can be obtained, on request, from the Director, Cambridge Crystallographic Data Center, 12 Union Road, Cambridge, CB2 1EZ, UK.
-
The stereochemistry was determined by conversion to the corresponding p-nitrobezoate xii whose stereochemistry was determined by X-ray crystallography. The authors have deposited the crystallographic data for xii with the Cambridge Crystallographic Data Center (CCDC 626356). The data can be obtained, on request, from the Director, Cambridge Crystallographic Data Center, 12 Union Road, Cambridge, CB2 1EZ, UK.
-
-
-
-
82
-
-
0037144679
-
-
13C NMR shifts: Dehli. J. R.; Gotor, V. J. Org. Chem. 2002, 67, 6816.
-
13C NMR shifts: Dehli. J. R.; Gotor, V. J. Org. Chem. 2002, 67, 6816.
-
-
-
-
83
-
-
33846953789
-
-
The ring junction stereochemistry was determined by conversion to the corresponding p-nitrobezoate xiii whose stereochemistry was determined by X-ray crystallography. The authors have deposited the crystallographic data for xiii with the Cambridge Crystallographic Data Center (CCDC 626357). The data can be obtained, on request, from the Director. Cambridge Crystallographic Data Center, 12 Union Road, Cambridge, CB2 1EZ, UK.
-
The ring junction stereochemistry was determined by conversion to the corresponding p-nitrobezoate xiii whose stereochemistry was determined by X-ray crystallography. The authors have deposited the crystallographic data for xiii with the Cambridge Crystallographic Data Center (CCDC 626357). The data can be obtained, on request, from the Director. Cambridge Crystallographic Data Center, 12 Union Road, Cambridge, CB2 1EZ, UK.
-
-
-
-
84
-
-
33846974938
-
-
2Cl in 41 and 42 are minimal in this 5-membered ring: Eliel, E. L.; Wilen, S. H.; Mander, L. N. In Stereochemistry of Organic Compounds; Wiley: New York, 1994; pp 758-762.
-
2Cl in 41 and 42 are minimal in this 5-membered ring: Eliel, E. L.; Wilen, S. H.; Mander, L. N. In Stereochemistry of Organic Compounds; Wiley: New York, 1994; pp 758-762.
-
-
-
-
85
-
-
33846975659
-
-
The relative stabilities of cis and trans hydrindanes depends on temperature and substitution pattern, with angularly substituted cis-hydrindanes generally being more stable than their trans-hydrindane counterparts: Eliel, E. L, Wilen, S. H, Mander, L. N. In Stereochemistry of Organic Compounds; Wiley: New York, 1994; pp 774-775
-
The relative stabilities of cis and trans hydrindanes depends on temperature and substitution pattern, with angularly substituted cis-hydrindanes generally being more stable than their trans-hydrindane counterparts: Eliel, E. L.; Wilen, S. H.; Mander, L. N. In Stereochemistry of Organic Compounds; Wiley: New York, 1994; pp 774-775.
-
-
-
-
86
-
-
13644267675
-
-
Metalated nitriles are more electron rich than their neutral parent nitriles: (a) Wu, F.; Foley, S. R.; Burns, C. T.; Jordan, R. F. J. Am. Chem. Soc. 2005, 127, 1841.
-
Metalated nitriles are more electron rich than their neutral parent nitriles: (a) Wu, F.; Foley, S. R.; Burns, C. T.; Jordan, R. F. J. Am. Chem. Soc. 2005, 127, 1841.
-
-
-
-
87
-
-
13644270486
-
-
(b) Groux, L. F.; Weiss, T.; Reddy, D. N.; Chase, P. A.; Piers, W. E.; Ziegler, T.; Parvez, M.; Benet-Buchholz, J. J. Am. Chem. Soc. 2005, 127, 1854.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 1854
-
-
Groux, L.F.1
Weiss, T.2
Reddy, D.N.3
Chase, P.A.4
Piers, W.E.5
Ziegler, T.6
Parvez, M.7
Benet-Buchholz, J.8
-
88
-
-
33846964025
-
-
2 in THF without HMPA leads to full recovery of 43 indicating that the cyclization is kinetically controlled.
-
2 in THF without HMPA leads to full recovery of 43 indicating that the cyclization is kinetically controlled.
-
-
-
-
89
-
-
0001608912
-
-
For general experimental procedures see
-
For general experimental procedures see: Fleming, F. F.; Hussain, Z.; Weaver, D.; Norman, R. E. J. Org. Chem. 1997, 62, 1305.
-
(1997)
J. Org. Chem
, vol.62
, pp. 1305
-
-
Fleming, F.F.1
Hussain, Z.2
Weaver, D.3
Norman, R.E.4
|