메뉴 건너뛰기




Volumn 6, Issue 12, 2006, Pages 2955-2958

The role of chemical contacts in molecular conductance

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL CONTACTS; ELECTRONIC STATES; MOLECULAR CONDUCTANCE;

EID: 33846341805     PISSN: 15306984     EISSN: None     Source Type: Journal    
DOI: 10.1021/nl062412x     Document Type: Article
Times cited : (24)

References (35)
  • 2
    • 0038442872 scopus 로고    scopus 로고
    • and references therein
    • Nitzan, A.; Ratner, M. A. Science 2003, 300, 1384 and references therein.
    • (2003) Science , vol.300 , pp. 1384
    • Nitzan, A.1    Ratner, M.A.2
  • 18
    • 33846399090 scopus 로고    scopus 로고
    • This model is described by, e.g, Lang, N. D. In Theory of the Inhomogeneous Electron Gas; Lundqvist, S, March, N. H, Eds, Plenum Press: New York, 1983; p 309. We take rs, 2 a.u, typical of a high-electron-density metal, where (4/3)πrs3 ≡ with n the mean interior electron number density in the metal
    • 3 ≡ with n the mean interior electron number density in the metal.
  • 22
    • 33846371880 scopus 로고    scopus 로고
    • 0 the Green's function for the pair of bare electrodes and G that for the full system.
    • 0 the Green's function for the pair of bare electrodes and G that for the full system.
  • 23
    • 33846394637 scopus 로고    scopus 로고
    • By density of states we mean here the difference in density of energy eigenstates between two systems: the pair of electrodes connected by the molecule (including the W atom on each end) and the same pair of electrodes (with the same spacing) without the molecule and the W atoms. The eigenstates referred to are those of the single-particle equations of the density-functional formalism
    • By density of states we mean here the difference in density of energy eigenstates between two systems: the pair of electrodes connected by the molecule (including the W atom on each end) and the same pair of electrodes (with the same spacing) without the molecule and the W atoms. The eigenstates referred to are those of the single-particle equations of the density-functional formalism.
  • 24
    • 0037206850 scopus 로고    scopus 로고
    • Note that the molecular orbitals corresponding to the resonances of interest here typically have a number of nodes between atoms. Evidence of such nodes is seen in the LDOS plots given in Figure 1. This does not however preclude a large conductance. For example, conduction through an H2 molecule is via the antibonding state, with a conductance value of nearly one quantum unit. A calculation of this is given in Smit, R. H. M, Noat, Y, Untiedt, C, Lang, N. D, van Hemert, M. C, van Ruitenbeek, J. M. Nature 2002, 419, 906
    • 2 molecule is via the antibonding state, with a conductance value of nearly one quantum unit. A calculation of this is given in Smit, R. H. M.; Noat, Y.; Untiedt, C.; Lang, N. D.; van Hemert, M. C.; van Ruitenbeek, J. M. Nature 2002, 419, 906.
  • 26
    • 33846386365 scopus 로고    scopus 로고
    • The conductance of bithiophene dithiolate where the rings are physically canted is only ∼20% smaller than that for the case of planar bithiophene dithiolate
    • The conductance of bithiophene dithiolate where the rings are physically canted is only ∼20% smaller than that for the case of planar bithiophene dithiolate.
  • 27
    • 33846371410 scopus 로고    scopus 로고
    • Note that the Lippmann-Schwinger equation that in the self-consistent calculation is used only for energies between the two electrode Fermi levels, is also used in a final iteration to get the density-of-states curves of Figure 2 over the energy range shown
    • Note that the Lippmann-Schwinger equation that in the self-consistent calculation is used only for energies between the two electrode Fermi levels, is also used in a final iteration to get the density-of-states curves of Figure 2 over the energy range shown.
  • 31
    • 33846348217 scopus 로고    scopus 로고
    • Free molecular orbitals were calculated using Gaussian 98: Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Zakrzewski, V. G, Montgomery, J. A, Jr, Stratmann, R. E, Burant, J. C, Dapprich, S, Millam, J. M, Daniels, A. D, Kudin, K. N, Strain, M. C; Farkas, O, Tomasi, J, Barone, V, Cossi, M, Cammi, R, Mennucci, B, Pomelli, C, Adamo, C, Clifford, S, Ochterski, J, Petersson, G. A, Ayala, P. Y, Cui, Q, Morokuma, K, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Cioslowski, J, Ortiz, J. V, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Gomperts, R, Martin, R. L, Fox, D. J, Keith, T, Al-Laham, M. A, Peng, C. Y, Nanayakkara, A, Gonzalez, C, Challacombe, M, Gill, P. M. W, Johason, B. G, Chen, W, Wong, M. W, Andres, J. L, Head-Gordon, M, Replogle, E. S, Pople, J. A. Gaussian 98; Gaussian, Inc, Pittsburgh, PA, 1998
    • Free molecular orbitals were calculated using Gaussian 98: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johason, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98; Gaussian, Inc.: Pittsburgh, PA, 1998.
  • 32
    • 33846384231 scopus 로고    scopus 로고
    • 26 Note that the Mulliken electronegativity of a metal surface is just its work function.
    • 26 Note that the Mulliken electronegativity of a metal surface is just its work function.
  • 34
    • 33846396661 scopus 로고    scopus 로고
    • 9.30 Given that most experimental systems do not probe single crystal surfaces, but various metal faces and molecular angles, the uniform-background model should provide a relevant description of the junctions.
    • 9.30 Given that most experimental systems do not probe single crystal surfaces, but various metal faces and molecular angles, the uniform-background model should provide a relevant description of the junctions.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.