-
2
-
-
0038442872
-
-
and references therein
-
Nitzan, A.; Ratner, M. A. Science 2003, 300, 1384 and references therein.
-
(2003)
Science
, vol.300
, pp. 1384
-
-
Nitzan, A.1
Ratner, M.A.2
-
5
-
-
0037135770
-
-
Kushmerick, J. G.; Holt, D. B.; Yang, J. C.; Naciri, J.; Moore, M. H.; Shashidhar, R. Phys. Rev. Lett. 2002, 89, 086802.
-
(2002)
Phys. Rev. Lett
, vol.89
, pp. 086802
-
-
Kushmerick, J.G.1
Holt, D.B.2
Yang, J.C.3
Naciri, J.4
Moore, M.H.5
Shashidhar, R.6
-
6
-
-
0035913978
-
-
Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moor, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Science 2001, 294, 571.
-
(2001)
Science
, vol.294
, pp. 571
-
-
Cui, X.D.1
Primak, A.2
Zarate, X.3
Tomfohr, J.4
Sankey, O.F.5
Moore, A.L.6
Moor, T.A.7
Gust, D.8
Harris, G.9
Lindsay, S.M.10
-
7
-
-
0042076872
-
-
Tour, J. M.; Jones, II. L.; Pearson, D. L.; Lumba, J. J. S.; Burgin, T. P.; Whitesides, G. M.; Allara, D. L.; Parikh, A. N.; Atre, S. V. J. Am. Chem. Soc. 1995, 117, 9529.
-
(1995)
J. Am. Chem. Soc
, vol.117
, pp. 9529
-
-
Tour, J.M.1
Jones II, L.2
Pearson, D.L.3
Lumba, J.J.S.4
Burgin, T.P.5
Whitesides, G.M.6
Allara, D.L.7
Parikh, A.N.8
Atre, S.V.9
-
8
-
-
27744512099
-
-
Monnell, J. D.; Stapleton, J. J.; Dirk, S. M.; Reinerth, W. A.; Tour, J. M.; Allara, D. L.; Weiss, P. S. J. Phys. Chem. B 2005, 109, 20343.
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 20343
-
-
Monnell, J.D.1
Stapleton, J.J.2
Dirk, S.M.3
Reinerth, W.A.4
Tour, J.M.5
Allara, D.L.6
Weiss, P.S.7
-
9
-
-
0142089081
-
-
Patrone, L.; Palacin, S.; Charlier, J.; Armand, F.; Bourgoin, J. P.; Tang, H.; Gauthier, S. Phys. Rev. Lett. 2003, 91, 096802.
-
(2003)
Phys. Rev. Lett
, vol.91
, pp. 096802
-
-
Patrone, L.1
Palacin, S.2
Charlier, J.3
Armand, F.4
Bourgoin, J.P.5
Tang, H.6
Gauthier, S.7
-
12
-
-
0033585583
-
-
Seminario, J. M.; Zacarias, A. G.; Tour, J. M. J. Am. Chem. Soc. 1999, 121, 411.
-
(1999)
J. Am. Chem. Soc
, vol.121
, pp. 411
-
-
Seminario, J.M.1
Zacarias, A.G.2
Tour, J.M.3
-
14
-
-
0141629832
-
-
Kushmerick, J. G.; Naciri, J.; Yang, J. C.; Shashidhar, R. Nano Lett. 2003, 3, 897.
-
(2003)
Nano Lett
, vol.3
, pp. 897
-
-
Kushmerick, J.G.1
Naciri, J.2
Yang, J.C.3
Shashidhar, R.4
-
15
-
-
0000005146
-
-
Chen, J.; Calvet, L. C.; Reed, M. A.; Carr, D. W.; Grubisha, D. S.; Bennett, D. W. Chem. Phys. Lett. 1999, 313, 741.
-
(1999)
Chem. Phys. Lett
, vol.313
, pp. 741
-
-
Chen, J.1
Calvet, L.C.2
Reed, M.A.3
Carr, D.W.4
Grubisha, D.S.5
Bennett, D.W.6
-
16
-
-
22744431909
-
-
Tulevski, G. S.; Myers, M. B.; Hybertsen, M. S.; Steigerwald, M. L.; Nuckolls, C. Science 2005, 309, 591.
-
(2005)
Science
, vol.309
, pp. 591
-
-
Tulevski, G.S.1
Myers, M.B.2
Hybertsen, M.S.3
Steigerwald, M.L.4
Nuckolls, C.5
-
17
-
-
0001683895
-
-
Hu, C.; Hodgeman, W. C.; Bennett, D. W. Inorg. Chem. 1996, 35, 1621.
-
(1996)
Inorg. Chem
, vol.35
, pp. 1621
-
-
Hu, C.1
Hodgeman, W.C.2
Bennett, D.W.3
-
18
-
-
33846399090
-
-
This model is described by, e.g, Lang, N. D. In Theory of the Inhomogeneous Electron Gas; Lundqvist, S, March, N. H, Eds, Plenum Press: New York, 1983; p 309. We take rs, 2 a.u, typical of a high-electron-density metal, where (4/3)πrs3 ≡ with n the mean interior electron number density in the metal
-
3 ≡ with n the mean interior electron number density in the metal.
-
-
-
-
20
-
-
0000953948
-
-
Williams, A. R.; Feibelman, P. J.; Lang, N. D. Phys. Rev. B 1982, 26, 5433.
-
(1982)
Phys. Rev. B
, vol.26
, pp. 5433
-
-
Williams, A.R.1
Feibelman, P.J.2
Lang, N.D.3
-
22
-
-
33846371880
-
-
0 the Green's function for the pair of bare electrodes and G that for the full system.
-
0 the Green's function for the pair of bare electrodes and G that for the full system.
-
-
-
-
23
-
-
33846394637
-
-
By density of states we mean here the difference in density of energy eigenstates between two systems: the pair of electrodes connected by the molecule (including the W atom on each end) and the same pair of electrodes (with the same spacing) without the molecule and the W atoms. The eigenstates referred to are those of the single-particle equations of the density-functional formalism
-
By density of states we mean here the difference in density of energy eigenstates between two systems: the pair of electrodes connected by the molecule (including the W atom on each end) and the same pair of electrodes (with the same spacing) without the molecule and the W atoms. The eigenstates referred to are those of the single-particle equations of the density-functional formalism.
-
-
-
-
24
-
-
0037206850
-
-
Note that the molecular orbitals corresponding to the resonances of interest here typically have a number of nodes between atoms. Evidence of such nodes is seen in the LDOS plots given in Figure 1. This does not however preclude a large conductance. For example, conduction through an H2 molecule is via the antibonding state, with a conductance value of nearly one quantum unit. A calculation of this is given in Smit, R. H. M, Noat, Y, Untiedt, C, Lang, N. D, van Hemert, M. C, van Ruitenbeek, J. M. Nature 2002, 419, 906
-
2 molecule is via the antibonding state, with a conductance value of nearly one quantum unit. A calculation of this is given in Smit, R. H. M.; Noat, Y.; Untiedt, C.; Lang, N. D.; van Hemert, M. C.; van Ruitenbeek, J. M. Nature 2002, 419, 906.
-
-
-
-
25
-
-
4243491226
-
-
Brédas, J. L.; Thémans, B.; Fripiat, J. G.; André, J. M.; Chance, R. R. Phys. Rev. B 1984, 29, 6761.
-
(1984)
Phys. Rev. B
, vol.29
, pp. 6761
-
-
Brédas, J.L.1
Thémans, B.2
Fripiat, J.G.3
André, J.M.4
Chance, R.R.5
-
26
-
-
33846386365
-
-
The conductance of bithiophene dithiolate where the rings are physically canted is only ∼20% smaller than that for the case of planar bithiophene dithiolate
-
The conductance of bithiophene dithiolate where the rings are physically canted is only ∼20% smaller than that for the case of planar bithiophene dithiolate.
-
-
-
-
27
-
-
33846371410
-
-
Note that the Lippmann-Schwinger equation that in the self-consistent calculation is used only for energies between the two electrode Fermi levels, is also used in a final iteration to get the density-of-states curves of Figure 2 over the energy range shown
-
Note that the Lippmann-Schwinger equation that in the self-consistent calculation is used only for energies between the two electrode Fermi levels, is also used in a final iteration to get the density-of-states curves of Figure 2 over the energy range shown.
-
-
-
-
29
-
-
0037174406
-
-
Beebe, J. M.; Engelkes, V. B.; Miller, L. L.; Frisbie, C. D. J. Am. Chem. Soc. 2002, 124, 11268.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 11268
-
-
Beebe, J.M.1
Engelkes, V.B.2
Miller, L.L.3
Frisbie, C.D.4
-
30
-
-
1542345356
-
-
Murphy, K. L.; Tysoe, W. T.; Bennett, D. W. Langmuir 2004, 20, 1732.
-
(2004)
Langmuir
, vol.20
, pp. 1732
-
-
Murphy, K.L.1
Tysoe, W.T.2
Bennett, D.W.3
-
31
-
-
33846348217
-
-
Free molecular orbitals were calculated using Gaussian 98: Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Zakrzewski, V. G, Montgomery, J. A, Jr, Stratmann, R. E, Burant, J. C, Dapprich, S, Millam, J. M, Daniels, A. D, Kudin, K. N, Strain, M. C; Farkas, O, Tomasi, J, Barone, V, Cossi, M, Cammi, R, Mennucci, B, Pomelli, C, Adamo, C, Clifford, S, Ochterski, J, Petersson, G. A, Ayala, P. Y, Cui, Q, Morokuma, K, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Cioslowski, J, Ortiz, J. V, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Gomperts, R, Martin, R. L, Fox, D. J, Keith, T, Al-Laham, M. A, Peng, C. Y, Nanayakkara, A, Gonzalez, C, Challacombe, M, Gill, P. M. W, Johason, B. G, Chen, W, Wong, M. W, Andres, J. L, Head-Gordon, M, Replogle, E. S, Pople, J. A. Gaussian 98; Gaussian, Inc, Pittsburgh, PA, 1998
-
Free molecular orbitals were calculated using Gaussian 98: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johason, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98; Gaussian, Inc.: Pittsburgh, PA, 1998.
-
-
-
-
32
-
-
33846384231
-
-
26 Note that the Mulliken electronegativity of a metal surface is just its work function.
-
26 Note that the Mulliken electronegativity of a metal surface is just its work function.
-
-
-
-
33
-
-
26744477118
-
-
See, for example
-
See, for example: Lang, N. D.; Williams, A. R. Phys. Rev. Lett. 1976, 37, 212.
-
(1976)
Phys. Rev. Lett
, vol.37
, pp. 212
-
-
Lang, N.D.1
Williams, A.R.2
-
34
-
-
33846396661
-
-
9.30 Given that most experimental systems do not probe single crystal surfaces, but various metal faces and molecular angles, the uniform-background model should provide a relevant description of the junctions.
-
9.30 Given that most experimental systems do not probe single crystal surfaces, but various metal faces and molecular angles, the uniform-background model should provide a relevant description of the junctions.
-
-
-
-
35
-
-
0034837070
-
-
Seminario, J. M.; De La Cruz, C. E.; Derosa, P. A. J. Am. Chem. Soc. 2001, 123, 5616.
-
(2001)
J. Am. Chem. Soc
, vol.123
, pp. 5616
-
-
Seminario, J.M.1
De La Cruz, C.E.2
Derosa, P.A.3
|