메뉴 건너뛰기




Volumn 18, Issue 1, 2007, Pages 14-27

Backpropagation algorithms for a broad class of dynamic networks

Author keywords

Backpropagation through time (BPTT); Dynamic neural networks; Gradient; Jacobian; Layered digital dynamic network (LDDN); Real time recurrent learning (RTRL); Recurrent neural networks

Indexed keywords

ALGORITHMS; CALCULATIONS; RECURRENT NEURAL NETWORKS;

EID: 33846085516     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2006.882371     Document Type: Article
Times cited : (125)

References (37)
  • 1
    • 0034186923 scopus 로고    scopus 로고
    • "New results on recurrent network training: Unifying the algorithms and accelerating convergence"
    • May
    • A. F. Atiya and A. G. Parlos, "New results on recurrent network training: Unifying the algorithms and accelerating convergence," IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 697-709, May 2000.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.3 , pp. 697-709
    • Atiya, A.F.1    Parlos, A.G.2
  • 2
    • 0036506134 scopus 로고    scopus 로고
    • "Stability analysis of discrete-time recurrent neural networks"
    • Mar
    • N. E. Barabanov and D. V. Prokhorov, "Stability analysis of discrete-time recurrent neural networks," IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 292-303, Mar. 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.2 , pp. 292-303
    • Barabanov, N.E.1    Prokhorov, D.V.2
  • 3
  • 4
    • 19344364721 scopus 로고    scopus 로고
    • "Decision feedback recurrent neural equalization with fast convergence rate"
    • May
    • J. Choi, M. Bouchard, and T. H. Yeap, "Decision feedback recurrent neural equalization with fast convergence rate," IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 699-708, May 2005.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.3 , pp. 699-708
    • Choi, J.1    Bouchard, M.2    Yeap, T.H.3
  • 5
    • 33846086221 scopus 로고    scopus 로고
    • "Training General Dynamic Neural Networks"
    • Ph.D. dissertation, Oklahoma State Univ., Stillwater, OK
    • O. De Jesús, "Training General Dynamic Neural Networks," Ph.D. dissertation, Oklahoma State Univ., Stillwater, OK, 2002.
    • (2002)
    • De Jesús, O.1
  • 6
    • 85178274056 scopus 로고    scopus 로고
    • "Backpropagation through time for a general class of recurrent network"
    • presented at the IEEE Int. Joint Conf. Neural Netw., Washington, DC, Jul
    • O. De Jesús and M. Hagan, "Backpropagation through time for a general class of recurrent network," presented at the IEEE Int. Joint Conf. Neural Netw., Washington, DC, Jul. 2001.
    • (2001)
    • De Jesús, O.1    Hagan, M.2
  • 7
    • 0034875838 scopus 로고    scopus 로고
    • "Forward perturbation for a general class of dynamic network"
    • in Washington, DC, Jul
    • O. De Jesús and M. Hagan, "Forward perturbation for a general class of dynamic network," in IEEE Int. Joint Conf. Neural Netw., Washington, DC, Jul. 2001, vol. 4, pp. 2626-2631.
    • (2001) IEEE Int. Joint Conf. Neural Netw. , vol.4 , pp. 2626-2631
    • De Jesús, O.1    Hagan, M.2
  • 9
    • 0032203999 scopus 로고    scopus 로고
    • "A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification"
    • in Nov
    • L. A. Feldkamp and G. V. Puskorius, "A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification," in Proc. IEEE, Nov. 1998, vol. 86, no. 11, pp. 2259-2277.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2259-2277
    • Feldkamp, L.A.1    Puskorius, G.V.2
  • 11
    • 0025539361 scopus 로고
    • "Nonlinear dynamic system identification using artificial neural networks (ANNs)"
    • in San Diego, CA
    • B. Fernandez, A. G. Parlos, and W. K. Tsai, "Nonlinear dynamic system identification using artificial neural networks (ANNs)," in Proc. Int. Joint Conf. Neural Netw., San Diego, CA, 1990, vol. 11, pp. 133-141.
    • (1990) Proc. Int. Joint Conf. Neural Netw. , vol.11 , pp. 133-141
    • Fernandez, B.1    Parlos, A.G.2    Tsai, W.K.3
  • 13
    • 0002654225 scopus 로고    scopus 로고
    • "Training recurrent networks for filtering and control"
    • in L. R. Medsker and L. C. Jain, Eds. Boca Raton, FL: CRC Press
    • M. Hagan, O. De Jesús, and R. Schultz, "Training recurrent networks for filtering and control," in Recurrent Neural Networks: Design and Applications, L. R. Medsker and L. C. Jain, Eds. Boca Raton, FL: CRC Press, 2000, pp. 325-354.
    • (2000) Recurrent Neural Networks: Design and Applications , pp. 325-354
    • Hagan, M.1    De Jesús, O.2    Schultz, R.3
  • 15
    • 0028543366 scopus 로고
    • "Training feedforward networks with the Marquardt algorithm"
    • Nov
    • M. Hagan and M. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989-993, Nov. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.1    Menhaj, M.2
  • 16
    • 0031573117 scopus 로고    scopus 로고
    • "Long short-term memory"
    • S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
    • (1997) Neural Comput. , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 17
    • 0001117376 scopus 로고    scopus 로고
    • "Spatio-temporal connectionist networks: A taxonomy and review"
    • Feb
    • S. C. Kremer, "Spatio-temporal connectionist networks: A taxonomy and review," Neural Comput., vol. 13, no. 2, pp. 249-306, Feb. 2001.
    • (2001) Neural Comput. , vol.13 , Issue.2 , pp. 249-306
    • Kremer, S.C.1
  • 20
    • 0025399567 scopus 로고
    • "Identification and control for dynamic systems using neural networks"
    • Jan
    • K. S. Narendra and A. M. Parthasrathy, "Identification and control for dynamic systems using neural networks," IEEE Trans. Neural Netw., vol. 1, no. 1, p. 4, Jan. 1990.
    • (1990) IEEE Trans. Neural Netw. , vol.1 , Issue.1 , pp. 4
    • Narendra, K.S.1    Parthasrathy, A.M.2
  • 21
    • 0028401031 scopus 로고
    • "Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks"
    • Mar
    • G. V. Puskorius and L. A. Feldkamp, "Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks," IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 279-297, Mar. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.2 , pp. 279-297
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 22
    • 0000646059 scopus 로고
    • "Learning internal representations by error propagation"
    • in D. Rumelhart and F. McClelland, Eds. Cambridge, MA: MIT Press
    • D. Rumelhart, D. Hinton, and G. Williams, "Learning internal representations by error propagation," in Parallel Distributed Processing, D. Rumelhart and F. McClelland, Eds. Cambridge, MA: MIT Press, 1986, vol. 1.
    • (1986) Parallel Distributed Processing , vol.1
    • Rumelhart, D.1    Hinton, D.2    Williams, G.3
  • 23
    • 0000053463 scopus 로고
    • 3) time complexity learning algorithm for fully recurrent continually running networks"
    • 3) time complexity learning algorithm for fully recurrent continually running networks," Neural Comput., vol. 4, pp. 243-248, 1992.
    • (1992) Neural Comput. , vol.4 , pp. 243-248
    • Schmidhuber, J.1
  • 24
    • 0000651310 scopus 로고
    • "Green's method for fast on-line learning algorithm of recurrent neural networks"
    • in In: J. Moody, S. Hanson, and R. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann
    • G. Z. Sun, H. H. Chen, and Y. C. Lee, "Green's method for fast on-line learning algorithm of recurrent neural networks," in In: Advances in Neural Information Processing Systems 4, J. Moody, S. Hanson, and R. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 333-340.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 333-340
    • Sun, G.Z.1    Chen, H.H.2    Lee, Y.C.3
  • 25
    • 6044234526 scopus 로고    scopus 로고
    • "Markovian architectural bias of recurrent neural networks"
    • Jan
    • P. Tino, M. Cernansky, and L. Benuskova, "Markovian architectural bias of recurrent neural networks," IEEE Trans. Neural Netw., vol. 15, no. 1, pp. 6-15, Jan. 2004.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.1 , pp. 6-15
    • Tino, P.1    Cernansky, M.2    Benuskova, L.3
  • 26
    • 0141690088 scopus 로고
    • "Adjoint-functions and temporal learning algorithms in neural networks"
    • in In: R. Lippmann, J. Moody, and D. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann
    • N. Toomarian and J. Barben, "Adjoint-functions and temporal learning algorithms in neural networks," in In: Advances in Neural Information Processing Systems 3, R. Lippmann, J. Moody, and D. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1991, pp. 113-120.
    • (1991) Advances in Neural Information Processing Systems 3 , pp. 113-120
    • Toomarian, N.1    Barben, J.2
  • 27
    • 0026685372 scopus 로고
    • "Learning a trajectory using adjoint functions and teacher forcing"
    • N. Toomarian and J. Barben, "Learning a trajectory using adjoint functions and teacher forcing," Neural Netw., vol. 5, pp. 473-484, 1992.
    • (1992) Neural Netw. , vol.5 , pp. 473-484
    • Toomarian, N.1    Barben, J.2
  • 28
    • 0028392406 scopus 로고
    • "Locally recurrent globally feedforward networks: A critical review of architectures"
    • Mar
    • A. C. Tsoi and A. D. Back, "Locally recurrent globally feedforward networks: A critical review of architectures," IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 229-239, Mar. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.2 , pp. 229-239
    • Tsoi, A.C.1    Back, A.D.2
  • 29
    • 0003529238 scopus 로고
    • "Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences"
    • Ph.D. dissertation, Harvard Univ., Cambridge, MA
    • P. J. Werbos, "Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences," Ph.D. dissertation, Harvard Univ., Cambridge, MA, 1974.
    • (1974)
    • Werbos, P.J.1
  • 30
    • 0025503558 scopus 로고
    • "Backpropagation through time: What it is and how to do it"
    • Oct
    • P. J. Werbos, "Backpropagation through time: What it is and how to do it," Proc. IEEE, vol. 78, no. 10, pp. 1550-1560, Oct. 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 31
    • 0001765578 scopus 로고
    • "Gradient-based learning algorithms for recurrent neural networks and their computational complexity"
    • in Y. Chauvin and D. E. Rumelhart, Eds. Hillsdale, NJ: Lawrence Erlbaum
    • R. J. Williams and J. Peng, "Gradient-based learning algorithms for recurrent neural networks and their computational complexity," in Backpropagation: Theory, Architectures, and Applications, Y. Chauvin and D. E. Rumelhart, Eds. Hillsdale, NJ: Lawrence Erlbaum, 1992, pp. 433-486.
    • (1992) Backpropagation: Theory, Architectures, and Applications , pp. 433-486
    • Williams, R.J.1    Peng, J.2
  • 32
    • 0001202594 scopus 로고
    • "A learning algorithm for continually running fully recurrent neural networks"
    • R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Neural Comput., vol. 1, pp. 270-280, 1989.
    • (1989) Neural Comput. , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 33
    • 0025555891 scopus 로고
    • "Temporal backpropagation for FIR neural networks"
    • E. A. Wan, "Temporal backpropagation for FIR neural networks," in Proc. IEEE Int. Joint Conf. Neural Netw., 1990, vol. 1, pp. 575-580.
    • (1990) Proc. IEEE Int. Joint Conf. Neural Netw. , vol.1 , pp. 575-580
    • Wan, E.A.1
  • 35
    • 4243513810 scopus 로고
    • "Neurocontrol Using Dynamic Learning"
    • Ph.D. dissertation, Oklahoma State Univ., Stillwater, OK
    • W. Yang, "Neurocontrol Using Dynamic Learning," Ph.D. dissertation, Oklahoma State Univ., Stillwater, OK, 1994.
    • (1994)
    • Yang, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.