메뉴 건너뛰기




Volumn 15, Issue 1, 2004, Pages 6-15

Markovian architectural bias of recurrent neural networks

Author keywords

Complex symbolic sequences; Information latching problem; Iterative function systems; Markov models; Recurrent neural networks (RNNs)

Indexed keywords

CHAOS THEORY; CONTEXT FREE LANGUAGES; ITERATIVE METHODS; MARKOV PROCESSES; MATHEMATICAL MODELS; RECURSIVE FUNCTIONS; STATE SPACE METHODS;

EID: 6044234526     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2003.820839     Document Type: Article
Times cited : (170)

References (49)
  • 1
    • 0001949873 scopus 로고
    • Recurrent networks: State machines or iterated function systems?
    • M. C. Mozer, P. Smolensky, D. S. Touretzky, J. L. Elman, and A. S. Weigend, Eds. Hillsdale, NJ: Erlbaum Associates
    • J. F. Kolen, "Recurrent networks: state machines or iterated function systems?," in Proc. 1993 Connectionist Models Summer School, M. C. Mozer, P. Smolensky, D. S. Touretzky, J. L. Elman, and A. S. Weigend, Eds. Hillsdale, NJ: Erlbaum Associates, 1994, pp. 203-210.
    • (1994) Proc. 1993 Connectionist Models Summer School , pp. 203-210
    • Kolen, J.F.1
  • 2
    • 0038087303 scopus 로고
    • The origin of clusters in recurrent neural network state space
    • Hillsdale, NJ: Erlbaum Associates
    • ____, "The origin of clusters in recurrent neural network state space," in Proc. 16th Annu. Conf. the Cognitive Science Society. Hillsdale, NJ: Erlbaum Associates, 1994, pp. 508-513.
    • (1994) Proc. 16th Annu. Conf. the Cognitive Science Society , pp. 508-513
    • Kolen, J.F.1
  • 3
    • 0001117376 scopus 로고
    • Spatio-temporal connectionist networks: A taxonomy and review
    • S. C. Kremer, "Spatio-temporal connectionist networks: a taxonomy and review," Neural Comput., vol. 13, no. 2, pp. 249-306, 2001.
    • (1994) Neural Comput. , vol.13 , Issue.2 , pp. 249-306
    • Kremer, S.C.1
  • 4
    • 0000392660 scopus 로고    scopus 로고
    • Analysis of dynamical recognizers
    • A. D. Blair and J. B. Pollack, "Analysis of dynamical recognizers," Neural Computation, vol. 9, pp. 1127-1142, 1997.
    • (1997) Neural Computation , vol.9 , pp. 1127-1142
    • Blair, A.D.1    Pollack, J.B.2
  • 5
    • 84943223999 scopus 로고
    • The problem of learning long-term dependencies in recurrent networks
    • Y. Bengio, P. Frasconi, and P. Simard, "The problem of learning long-term dependencies in recurrent networks," in Proc. 1993 IEEE Int. Conf. Neural Networks, vol. 3, 1993, pp. 1183-1188.
    • (1993) Proc. 1993 IEEE Int. Conf. Neural Networks , vol.3 , pp. 1183-1188
    • Bengio, Y.1    Frasconi, P.2    Simard, P.3
  • 6
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. Neural Networks, vol. 5, no. 2, pp. 157-166, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 7
    • 0031573117 scopus 로고    scopus 로고
    • Long short term memory
    • J. Hochreiter and J. Schmidhuber, "Long short term memory," Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
    • (1997) Neural Comput. , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, J.1    Schmidhuber, J.2
  • 8
    • 0000111307 scopus 로고
    • Finite state automata and simple recurrent networks
    • A. Cleeremans, D. Servan-Schreiber, and J. L. McClelland, "Finite state automata and simple recurrent networks," Neural Comput., vol. 1, no. 3, pp. 372-381, 1989.
    • (1989) Neural Comput. , vol.1 , Issue.3 , pp. 372-381
    • Cleeremans, A.1    Servan-Schreiber, D.2    McClelland, J.L.3
  • 9
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. L. Elman, "Finding structure in time," Cognitive Sci., vol. 14, pp. 179-211, 1990.
    • (1990) Cognitive Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 10
    • 0001327717 scopus 로고
    • Learning and extracting finite state automata with second-order recurrent neural networks
    • C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C. Lee, "Learning and extracting finite state automata with second-order recurrent neural networks," Neural Comput., vol. 4, no. 3, pp. 393-405, 1992.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 393-405
    • Giles, C.L.1    Miller, C.B.2    Chen, D.3    Chen, H.H.4    Sun, G.Z.5    Lee, Y.C.6
  • 11
    • 0006311788 scopus 로고
    • First order recurrent neural networks and deterministic finite state automata
    • P. Manolios and R. Fanelli, "First order recurrent neural networks and deterministic finite state automata," Neural Comput., vol. 6, no. 6, pp 1155-1173, 1994.
    • (1994) Neural Comput. , vol.6 , Issue.6 , pp. 1155-1173
    • Manolios, P.1    Fanelli, R.2
  • 12
    • 0001601299 scopus 로고
    • Induction of finite-state languages using second-order recurrent networks
    • R. L. Watrous and G. M. Kuhn, "Induction of finite-state languages using second-order recurrent networks," Neural Comput., vol. 4, no. 3, pp. 406-414, 1992.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 406-414
    • Watrous, R.L.1    Kuhn, G.M.2
  • 13
    • 0040726637 scopus 로고
    • Learning and extracting initial mealy machines with a modular neural network model
    • P. Tiňo and J. Sajda, "Learning and extracting initial mealy machines with a modular neural network model," Neural Comput., vol. 7, no. 4, pp. 822-844, 1995.
    • (1995) Neural Comput. , vol.7 , Issue.4 , pp. 822-844
    • Tiňo, P.1    Sajda, J.2
  • 14
    • 0030586641 scopus 로고    scopus 로고
    • The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction
    • M. P. Casey, "The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction," Neural Comput., vol. 8, no. 6, pp. 1135-1178, 1996.
    • (1996) Neural Comput. , vol.8 , Issue.6 , pp. 1135-1178
    • Casey, M.P.1
  • 15
    • 0030125824 scopus 로고    scopus 로고
    • Insertion of finite state automata in recurrent radial basis function networks
    • P. Frasconi, M. Gori, M. Maggini, and G. Soda, "Insertion of finite state automata in recurrent radial basis function networks," Machine Learning, vol. 23, pp. 5-32, 1996.
    • (1996) Machine Learning , vol.2 , pp. 5-32
    • Frasconi, P.1    Gori, M.2    Maggini, M.3    Soda, G.4
  • 16
    • 0029880174 scopus 로고    scopus 로고
    • Extraction of rules from discrete-time recurrent neural networks
    • C. W. Omlin and C. L. Giles, "Extraction of rules from discrete-time recurrent neural networks," Neural Networks, vol. 9, no. 1, pp. 41-51, 1996.
    • (1996) Neural Networks , vol.9 , Issue.1 , pp. 41-51
    • Omlin, C.W.1    Giles, C.L.2
  • 17
    • 0002054987 scopus 로고    scopus 로고
    • Finite state machines and recurrent neural networks - Automata and dynamical systems approaches
    • J. E. Dayhoff and O. Omidvar, Eds. New York: Academic
    • P. Tiňo, B. G. Horne, C. L. Giles, and P. C. Collingwood, "Finite state machines and recurrent neural networks - automata and dynamical systems approaches," in Neural Networks and Pattern Recognition, J. E. Dayhoff and O. Omidvar, Eds. New York: Academic, 1998, pp. 171-220.
    • (1998) Neural Networks and Pattern Recognition , pp. 171-220
    • Tiňo, P.1    Horne, B.G.2    Giles, C.L.3    Collingwood, P.C.4
  • 18
    • 0033097317 scopus 로고    scopus 로고
    • Extracting finite state representations from recurrent neural networks trained on chaotic symbolic sequences
    • P. Tiňo and M. Koteles, "Extracting finite state representations from recurrent neural networks trained on chaotic symbolic sequences," IEEE Trans. Neural Networks, vol. 10, no. 2, pp. 284-302, 1999.
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.2 , pp. 284-302
    • Tiňo, P.1    Koteles, M.2
  • 19
    • 0033212321 scopus 로고    scopus 로고
    • Toward a connectionist model of recursion in human linguistic performance
    • M. H. Christiansen and N. Chater, "Toward a connectionist model of recursion in human linguistic performance," Cognitive Sci., vol. 23, pp. 417-437, 1999.
    • (1999) Cognitive Sci. , vol.23 , pp. 417-437
    • Christiansen, M.H.1    Chater, N.2
  • 23
    • 0039530516 scopus 로고    scopus 로고
    • Variable length Markov chains
    • P. Buhlmann and A. J. Wyner, "Variable length Markov chains," Ann. Statist., vol. 27, pp. 480-513, 1999.
    • (1999) Ann. Statist. , vol.27 , pp. 480-513
    • Buhlmann, P.1    Wyner, A.J.2
  • 24
    • 0020824731 scopus 로고
    • A universal data compression system
    • Sept.
    • J. Rissanen, "A universal data compression system," IEEE Trans. Inform. Theory, vol. IT-29, pp. 656-664, Sept. 1983.
    • (1983) IEEE Trans. Inform. Theory , vol.IT-29 , pp. 656-664
    • Rissanen, J.1
  • 25
    • 0033098329 scopus 로고    scopus 로고
    • A recurrent neural network that learns to count
    • P. Rodriguez, J. Wiles, and J. L. Elman, "A recurrent neural network that learns to count," Connection Sci., vol. 11, pp. 5-40, 1999.
    • (1999) Connection Sci. , vol.11 , pp. 5-40
    • Rodriguez, P.1    Wiles, J.2    Elman, J.L.3
  • 26
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Neural Comput., vol. 1, no. 2, pp. 270-280, 1989.
    • (1989) Neural Comput. , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 27
    • 85132302281 scopus 로고
    • Training recurrent networks using the extended Kalman filter
    • R. J. Williams, "Training recurrent networks using the extended Kalman filter," in Proc. 1992 Int. Joint Conf. Neural Networks, vol. 4, 1992, pp. 241-246.
    • (1992) Proc. 1992 Int. Joint Conf. Neural Networks , vol.4 , pp. 241-246
    • Williams, R.J.1
  • 31
    • 0000860629 scopus 로고    scopus 로고
    • Predicting the future of discrete sequences from fractal representations of the past
    • P. Tiňo and G. Dorffner, "Predicting the future of discrete sequences from fractal representations of the past," Machine Learning, vol. 45, no. 2, pp. 187-218, 2001.
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 187-218
    • Tiňo, P.1    Dorffner, G.2
  • 32
    • 0035375070 scopus 로고    scopus 로고
    • Attractive periodic sets in discrete time recurrent networks (with emphasis on fixed point stability and bifurcations in two-neuron networks)
    • P. Tiňo, B. G. Horne, and C. L. Giles, "Attractive periodic sets in discrete time recurrent networks (with emphasis on fixed point stability and bifurcations in two-neuron networks)," Neural Comput., vol. 13, no. 6, pp. 1379-1414, 2001.
    • (2001) Neural Comput. , vol.13 , Issue.6 , pp. 1379-1414
    • Tiňo, P.1    Horne, B.G.2    Giles, C.L.3
  • 33
    • 33747598711 scopus 로고    scopus 로고
    • Natural language grammatical inference with recurrent neural networks
    • S. Lawrence, C. L. Giles, and S. Fong, "Natural language grammatical inference with recurrent neural networks," IEEE Trans. Knowledge Data Eng., vol. 12, no. 1, pp. 126-140, 2000.
    • (2000) IEEE Trans. Knowledge Data Eng. , vol.12 , Issue.1 , pp. 126-140
    • Lawrence, S.1    Giles, C.L.2    Fong, S.3
  • 35
    • 84953506049 scopus 로고
    • Insertion and refinement of production rules in recurrent neural networks
    • C. L. Giles and C. W. Omlin, "Insertion and refinement of production rules in recurrent neural networks," Connection Sci., vol. 5, no. 3, pp. 307-318, 1993.
    • (1993) Connection Sci. , vol.5 , Issue.3 , pp. 307-318
    • Giles, C.L.1    Omlin, C.W.2
  • 38
    • 0032888001 scopus 로고    scopus 로고
    • Language acquisition in the absence of explicit negative evidence: How important is starting small?
    • D. L. T. Rohde and D. C. Plaut, "Language acquisition in the absence of explicit negative evidence: How important is starting small?," Cognition, vol. 72, pp. 67-109, 1999.
    • (1999) Cognition , vol.72 , pp. 67-109
    • Rohde, D.L.T.1    Plaut, D.C.2
  • 39
    • 0032652550 scopus 로고    scopus 로고
    • Spatial representation of symbolic sequences through iterative function system
    • P. Tiňo, "Spatial representation of symbolic sequences through iterative function system," IEEE Trans. Systems, Man Cybern. Pt. A, vol. 29, no. 4, pp. 386-392, 1999.
    • (1999) IEEE Trans. Systems, Man Cybern. Pt. A , vol.29 , Issue.4 , pp. 386-392
    • Tiňo, P.1
  • 40
    • 0037083889 scopus 로고    scopus 로고
    • Multifractal properties of Hao's geometric representations of DNA sequences
    • ____, "Multifractal properties of Hao's geometric representations of DNA sequences," Physica A: Statist. Mech. its Applic., vol. 304, no. 3-4, pp. 480-494, 2002.
    • (2002) Physica A: Statist. Mech. its Applic. , vol.304 , Issue.3-4 , pp. 480-494
    • Tiňo, P.1
  • 42
    • 0030353353 scopus 로고    scopus 로고
    • On the dimension of deterministic and Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle conjecture
    • Y. Pesin and H. Weiss, "On the dimension of deterministic and Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle conjecture," Commun. Math. Phys, vol. 182, no. 1, pp. 105-153, 1996.
    • (1996) Commun. Math. Phys , vol.182 , Issue.1 , pp. 105-153
    • Pesin, Y.1    Weiss, H.2
  • 43
    • 0009375438 scopus 로고    scopus 로고
    • Dynamical automata
    • Cornell Univ., Computer Science Depth., Ithaca, NY, Tech. Rep. TR98-1694
    • W. Tabor, "Dynamical Automata," Cornell Univ., Computer Science Depth., Ithaca, NY, Tech. Rep. TR98-1694, 1998.
    • (1998)
    • Tabor, W.1
  • 44
    • 0033212322 scopus 로고    scopus 로고
    • Dynamical models of sentence processing
    • W. Tabor and M. K. Tanenhaus, "Dynamical models of sentence processing," Cognitive Sci., vol. 23, no. 4, pp. 491-515, 2000.
    • (2000) Cognitive Sci. , vol.23 , Issue.4 , pp. 491-515
    • Tabor, W.1    Tanenhaus, M.K.2
  • 45
    • 0033743045 scopus 로고    scopus 로고
    • Fractal encoding of context free grammars in connectionist networks
    • W. Tabor, "Fractal encoding of context free grammars in connectionist networks," Expert Syst.: Int. J. Knowledge Eng. Neural Networks, vol. 17, no. 1, pp. 41-56, 2000.
    • (2000) Expert Syst.: Int. J. Knowledge Eng. Neural Networks , vol.17 , Issue.1 , pp. 41-56
    • Tabor, W.1
  • 46
    • 0344592212 scopus 로고    scopus 로고
    • Enhanced multi-stream Kalman filter training for recurrent networks
    • J. Suykens and J. Vandewalle, Eds. Norwell, MA
    • L. Feldkamp, D. Prokhorov, C. Eagen, and F. Yuan, "Enhanced multi-stream Kalman filter training for recurrent networks," in Nonlinear Modeling: Advanced Black-Box Techniques, J. Suykens and J. Vandewalle, Eds. Norwell, MA, 1998, pp. 29-53.
    • (1998) Nonlinear Modeling: Advanced Black-Box Techniques , pp. 29-53
    • Feldkamp, L.1    Prokhorov, D.2    Eagen, C.3    Yuan, F.4
  • 48
    • 79955750805 scopus 로고    scopus 로고
    • An introduction to the Kalman filter
    • Univ. North Carolina, Raleigh, Tech. Rep. TR NC27599-3175
    • G. Welch and G. Bishop, "An Introduction to the Kalman Filter," Univ. North Carolina, Raleigh, Tech. Rep. TR NC27599-3175, 1997.
    • (1997)
    • Welch, G.1    Bishop, G.2
  • 49
    • 0025503558 scopus 로고
    • Backpropagation through time; what it does and how to do it
    • P. J. Werbos, "Backpropagation through time; what it does and how to do it," Proc. IEEE, vol. 78, pp. 1550-1560, 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.