-
1
-
-
0004419840
-
-
Tian W., Datta S., Hong S., Reifenberger R., Henderson J.I., and Kubiak C.P. J. Chem. Phys. 109 (1998) 2874
-
(1998)
J. Chem. Phys.
, vol.109
, pp. 2874
-
-
Tian, W.1
Datta, S.2
Hong, S.3
Reifenberger, R.4
Henderson, J.I.5
Kubiak, C.P.6
-
4
-
-
0000795025
-
-
Kergueris C., Bourgoin J.-P., Palacin S., Esteve D., Urbina C., Magoga M., and Joachim C. Phys. Rev. B 59 (1999) 12505
-
(1999)
Phys. Rev. B
, vol.59
, pp. 12505
-
-
Kergueris, C.1
Bourgoin, J.-P.2
Palacin, S.3
Esteve, D.4
Urbina, C.5
Magoga, M.6
Joachim, C.7
-
7
-
-
15544363479
-
-
Morkos (Ed), Acad. Press, New York (Chapter 2)
-
Zahid F., Paulsson M., and Datta S. In: Morkos (Ed). Edvanced Semiconductors and Organic Nano-techniques (2003), Acad. Press, New York 41 (Chapter 2)
-
(2003)
Edvanced Semiconductors and Organic Nano-techniques
, pp. 41
-
-
Zahid, F.1
Paulsson, M.2
Datta, S.3
-
9
-
-
3142692497
-
-
Kushmerick J.G., Whitaker C.M., Pollack S.K., Schull T.L., and Shashidhar R. Nanotechnology 15 (2004) S489
-
(2004)
Nanotechnology
, vol.15
-
-
Kushmerick, J.G.1
Whitaker, C.M.2
Pollack, S.K.3
Schull, T.L.4
Shashidhar, R.5
-
11
-
-
0037135770
-
-
Kushmerick J.G., Holt D.B., Yang J.C., Naciri J., Moore M.H., and Shashidhar R. Phys. Rev. Lett. 89 (2002) 086802
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 086802
-
-
Kushmerick, J.G.1
Holt, D.B.2
Yang, J.C.3
Naciri, J.4
Moore, M.H.5
Shashidhar, R.6
-
19
-
-
0037192991
-
-
Reichert J., Ochs R., Beckmann D., Weber H.B., Mayor M., and Löneysen H.v. Phys. Rev. Lett. 88 (2002) 176804
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 176804
-
-
Reichert, J.1
Ochs, R.2
Beckmann, D.3
Weber, H.B.4
Mayor, M.5
Löneysen, H.v.6
-
20
-
-
0035500559
-
-
Tikhodeev S., Natario M., Makoshi K., Mii T., and Ueba Y. Surf. Sci. 493 (2001) 63
-
(2001)
Surf. Sci.
, vol.493
, pp. 63
-
-
Tikhodeev, S.1
Natario, M.2
Makoshi, K.3
Mii, T.4
Ueba, Y.5
-
32
-
-
0037426872
-
-
Mujica V., Nitzan A., Dutta S., Ratner M., and Kubiak C.P. J. Phys. Chem. B 107 (2003) 91
-
(2003)
J. Phys. Chem. B
, vol.107
, pp. 91
-
-
Mujica, V.1
Nitzan, A.2
Dutta, S.3
Ratner, M.4
Kubiak, C.P.5
-
43
-
-
33748763028
-
-
note
-
The used Hubbard version of the Coulomb repulsion is valid for well localized MOs. For definite conditions, in particular, in the case of well separated extended molecular levels, the electron-electron interaction can be described by using a truncated form that is similar to the Hubbard-form [22].
-
-
-
-
47
-
-
33748773633
-
-
note
-
If only a pure electronic Hamiltonian (1) is used for a description of electron transfer process then one can obtain a coarse-grained description only.
-
-
-
-
49
-
-
0037102977
-
-
Weber H.B., Reichert J., Weigend F., Ochs R., Beckmann D., Mayor M., Ahlrichs R., and Löhneysen H.v. Chem. Phys. 281 (2002) 113
-
(2002)
Chem. Phys.
, vol.281
, pp. 113
-
-
Weber, H.B.1
Reichert, J.2
Weigend, F.3
Ochs, R.4
Beckmann, D.5
Mayor, M.6
Ahlrichs, R.7
Löhneysen, H.v.8
-
52
-
-
33646836561
-
-
Bouchiat H., Gefen Y., Gueron S., Montambaux G., and Dalibard J. (Eds), Elsevier, Amsterdam
-
Glazman L.I., and Pustilnik M. In: Bouchiat H., Gefen Y., Gueron S., Montambaux G., and Dalibard J. (Eds). Nanophysics: Coherence and Transport (2005), Elsevier, Amsterdam 427
-
(2005)
Nanophysics: Coherence and Transport
, pp. 427
-
-
Glazman, L.I.1
Pustilnik, M.2
-
54
-
-
33748767147
-
-
note
-
A doubly charged molecule does not transmit the extra electron between the leads. This is due to the fact that within the given voltage region only a single MO is assumed to be involved in the transmission process. Since the MO is already completely filled by two extra electrons, then, the third electron cannot be captured by this MO and cannot create a threefold charged virtual or real state with the participation of this single MO.
-
-
-
|